Jobson, Deddy
Fast solution to the fair ranking problem using the Sinkhorn algorithm
Uehara, Yuki, Ikeda, Shunnosuke, Nishimura, Naoki, Ohashi, Koya, Li, Yilin, Yang, Jie, Jobson, Deddy, Zha, Xingxia, Matsumoto, Takeshi, Sukegawa, Noriyoshi, Takano, Yuichi
In two-sided marketplaces such as online flea markets, recommender systems for providing consumers with personalized item rankings play a key role in promoting transactions between providers and consumers. Meanwhile, two-sided marketplaces face the problem of balancing consumer satisfaction and fairness among items to stimulate activity of item providers. Saito and Joachims (2022) devised an impact-based fair ranking method for maximizing the Nash social welfare based on fair division; however, this method, which requires solving a large-scale constrained nonlinear optimization problem, is very difficult to apply to practical-scale recommender systems. We thus propose a fast solution to the impact-based fair ranking problem. We first transform the fair ranking problem into an unconstrained optimization problem and then design a gradient ascent method that repeatedly executes the Sinkhorn algorithm. Experimental results demonstrate that our algorithm provides fair rankings of high quality and is about 1000 times faster than application of commercial optimization software.
Generalized Regression with Conditional GANs
Jobson, Deddy, Hudson, Eddy
Regression is typically treated as a curve-fitting process where the goal is to fit a prediction function to data. With the help of conditional generative adversarial networks, we propose to solve this age-old problem in a different way; we aim to learn a prediction function whose outputs, when paired with the corresponding inputs, are indistinguishable from feature-label pairs in the training dataset. We show that this approach to regression makes fewer assumptions on the distribution of the data we are fitting to and, therefore, has better representation capabilities. We draw parallels with generalized linear models in statistics and show how our proposal serves as an extension of them to neural networks. We demonstrate the superiority of this new approach to standard regression with experiments on multiple synthetic and publicly available real-world datasets, finding encouraging results, especially with real-world heavy-tailed regression datasets. To make our work more reproducible, we release our source code. Link to repository: https://anonymous.4open.science/r/regressGAN-7B71/
Personalized Promotion Decision Making Based on Direct and Enduring Effect Predictions
Yang, Jie, Li, Yilin, Jobson, Deddy
Promotions have been trending in the e-commerce marketplace to build up customer relationships and guide customers towards the desired actions. Since incentives are effective to engage customers and customers have different preferences for different types of incentives, the demand for personalized promotion decision making is increasing over time. However, research on promotion decision making has focused specifically on purchase conversion during the promotion period (the direct effect), while generally disregarding the enduring effect in the post promotion period. To achieve a better lift return on investment (lift ROI) on the enduring effect of the promotion and improve customer retention and loyalty, we propose a framework of multiple treatment promotion decision making by modeling each customer's direct and enduring response. First, we propose a customer direct and enduring effect (CDEE) model which predicts the customer direct and enduring response. With the help of the predictions of the CDEE, we personalize incentive allocation to optimize the enduring effect while keeping the cost under the budget. To estimate the effect of decision making, we apply an unbiased evaluation approach of business metrics with randomized control trial (RCT) data. We compare our method with benchmarks using two promotions in Mercari and achieve significantly better results.