Joan Bruna
Finding the Needle in the Haystack with Convolutions: on the benefits of architectural bias
Stéphane d'Ascoli, Levent Sagun, Giulio Biroli, Joan Bruna
Despite the phenomenal success of deep neural networks in a broad range of learning tasks, there is a lack of theory to understand the way they work. In particular, Convolutional Neural Networks (CNNs) are known to perform much better than Fully-Connected Networks (FCNs) on spatially structured data: the architectural structure of CNNs benefits from prior knowledge on the features of the data, for instance their translation invariance. The aim of this work is to understand this fact through the lens of dynamics in the loss landscape. We introduce a method that maps a CNN to its equivalent FCN (denoted as eFCN). Such an embedding enables the comparison of CNN and FCN training dynamics directly in the FCN space.
On the equivalence between graph isomorphism testing and function approximation with GNNs
Zhengdao Chen, Soledad Villar, Lei Chen, Joan Bruna
Graph neural networks (GNNs) have achieved lots of success on graph-structured data. In light of this, there has been increasing interest in studying their representation power. One line of work focuses on the universal approximation of permutation-invariant functions by certain classes of GNNs, and another demonstrates the limitation of GNNs via graph isomorphism tests. Our work connects these two perspectives and proves their equivalence. We further develop a framework of the representation power of GNNs with the language of sigma-algebra, which incorporates both viewpoints. Using this framework, we compare the expressive power of different classes of GNNs as well as other methods on graphs. In particular, we prove that order-2 Graph G-invariant networks fail to distinguish non-isomorphic regular graphs with the same degree. We then extend them to a new architecture, Ring-GNN, which succeeds in distinguishing these graphs as well as for tasks on real-world datasets.
Stability of Graph Scattering Transforms
Fernando Gama, Alejandro Ribeiro, Joan Bruna
Scattering transforms are non-trainable deep convolutional architectures that exploit the multi-scale resolution of a wavelet filter bank to obtain an appropriate representation of data. More importantly, they are proven invariant to translations, and stable to perturbations that are close to translations. This stability property provides the scattering transform with a robustness to small changes in the metric domain of the data. When considering network data, regular convolutions do not hold since the data domain presents an irregular structure given by the network topology. In this work, we extend scattering transforms to network data by using multiresolution graph wavelets, whose computation can be obtained by means of graph convolutions. Furthermore, we prove that the resulting graph scattering transforms are stable to metric perturbations of the underlying network. This renders graph scattering transforms robust to changes on the network topology, making it particularly useful for cases of transfer learning, topology estimation or time-varying graphs.
Finding the Needle in the Haystack with Convolutions: on the benefits of architectural bias
Stéphane d'Ascoli, Levent Sagun, Giulio Biroli, Joan Bruna
Despite the phenomenal success of deep neural networks in a broad range of learning tasks, there is a lack of theory to understand the way they work. In particular, Convolutional Neural Networks (CNNs) are known to perform much better than Fully-Connected Networks (FCNs) on spatially structured data: the architectural structure of CNNs benefits from prior knowledge on the features of the data, for instance their translation invariance. The aim of this work is to understand this fact through the lens of dynamics in the loss landscape. We introduce a method that maps a CNN to its equivalent FCN (denoted as eFCN). Such an embedding enables the comparison of CNN and FCN training dynamics directly in the FCN space.