Jo, Yongrae
LG AI Research & KAIST at EHRSQL 2024: Self-Training Large Language Models with Pseudo-Labeled Unanswerable Questions for a Reliable Text-to-SQL System on EHRs
Jo, Yongrae, Lee, Seongyun, Seo, Minju, Hwang, Sung Ju, Lee, Moontae
Text-to-SQL models are pivotal for making Electronic Health Records (EHRs) accessible to healthcare professionals without SQL knowledge. With the advancements in large language models, these systems have become more adept at translating complex questions into SQL queries. Nonetheless, the critical need for reliability in healthcare necessitates these models to accurately identify unanswerable questions or uncertain predictions, preventing misinformation. To address this problem, we present a self-training strategy using pseudo-labeled unanswerable questions to enhance the reliability of text-to-SQL models for EHRs. This approach includes a two-stage training process followed by a filtering method based on the token entropy and query execution. Our methodology's effectiveness is validated by our top performance in the EHRSQL 2024 shared task, showcasing the potential to improve healthcare decision-making through more reliable text-to-SQL systems.
Volcano: Mitigating Multimodal Hallucination through Self-Feedback Guided Revision
Lee, Seongyun, Park, Sue Hyun, Jo, Yongrae, Seo, Minjoon
Large multimodal models (LMMs) suffer from multimodal hallucination, where they provide incorrect responses misaligned with the given visual information. Recent works have conjectured that one of the reasons behind multimodal hallucination might be due to the vision encoder failing to ground on the image properly. To mitigate this issue, we propose a novel approach that leverages self-feedback as visual cues. Building on this approach, we introduce Volcano, a multimodal self-feedback guided revision model. Volcano generates natural language feedback to its initial response based on the provided visual information and utilizes this feedback to self-revise its initial response. Volcano effectively reduces multimodal hallucination and achieves state-of-the-art on MMHal-Bench, POPE, and GAVIE. It also improves on general multimodal abilities and outperforms previous models on MM-Vet and MMBench. Through a qualitative analysis, we show that Volcano's feedback is properly grounded on the image than the initial response. This indicates that Volcano can provide itself with richer visual information, helping alleviate multimodal hallucination. We publicly release Volcano models of 7B and 13B sizes along with the data and code at https://github.com/kaistAI/Volcano.
Efficiently Enhancing Zero-Shot Performance of Instruction Following Model via Retrieval of Soft Prompt
Ye, Seonghyeon, Jang, Joel, Kim, Doyoung, Jo, Yongrae, Seo, Minjoon
Enhancing the zero-shot performance of instruction-following models requires heavy computation, either by scaling the total number of training datasets or the model size. In this work, we explore how retrieval of soft prompts obtained through prompt tuning can efficiently assist hard prompts in zero-shot task generalization. Specifically, we train soft prompt embeddings for each prompt through prompt tuning, store the samples of the training instances mapped with the prompt embeddings, and retrieve the corresponding prompt embedding of the training instance closest to the query instance during inference. While only adding 0.007% additional parameters, retrieval of soft prompt enhances the performance of T0 on unseen tasks by outperforming it on 10 out of 11 datasets as well as improving the mean accuracy of T0 on BIG-bench benchmark by 2.39% points. Also, we report an interesting finding that retrieving source embeddings trained on similar answer choice formats is more important than those on similar task types.
FLASK: Fine-grained Language Model Evaluation based on Alignment Skill Sets
Ye, Seonghyeon, Kim, Doyoung, Kim, Sungdong, Hwang, Hyeonbin, Kim, Seungone, Jo, Yongrae, Thorne, James, Kim, Juho, Seo, Minjoon
Evaluation of Large Language Models (LLMs) is challenging because instruction-following necessitates alignment with human values and the required set of skills varies depending on the instruction. However, previous studies have mainly focused on coarse-grained evaluation (i.e. overall preference-based evaluation), which limits interpretability since it does not consider the nature of user instructions that require instance-wise skill composition. In this paper, we introduce FLASK (Fine-grained Language Model Evaluation based on Alignment Skill Sets), a fine-grained evaluation protocol for both human-based and model-based evaluation which decomposes coarse-level scoring to a skill set-level scoring for each instruction. We experimentally observe that the fine-graininess of evaluation is crucial for attaining a holistic view of model performance and increasing the reliability of the evaluation. Using FLASK, we compare multiple open-source and proprietary LLMs and observe a high correlation between model-based and human-based evaluations. We publicly release the evaluation data and code implementation at https://github.com/kaistAI/FLASK.
Zero-Shot Dense Video Captioning by Jointly Optimizing Text and Moment
Jo, Yongrae, Lee, Seongyun, Lee, Aiden SJ, Lee, Hyunji, Oh, Hanseok, Seo, Minjoon
Dense video captioning, a task of localizing meaningful moments and generating relevant captions for videos, often requires a large, expensive corpus of annotated video segments paired with text. In an effort to minimize the annotation cost, we propose ZeroTA, a novel method for dense video captioning in a zero-shot manner. Our method does not require any videos or annotations for training; instead, it localizes and describes events within each input video at test time by optimizing solely on the input. This is accomplished by introducing a soft moment mask that represents a temporal segment in the video and jointly optimizing it with the prefix parameters of a language model. This joint optimization aligns a frozen language generation model (i.e., GPT-2) with a frozen vision-language contrastive model (i.e., CLIP) by maximizing the matching score between the generated text and a moment within the video. We also introduce a pairwise temporal IoU loss to let a set of soft moment masks capture multiple distinct events within the video. Our method effectively discovers diverse significant events within the video, with the resulting captions appropriately describing these events. The empirical results demonstrate that ZeroTA surpasses zero-shot baselines and even outperforms the state-of-the-art few-shot method on the widely-used benchmark ActivityNet Captions. Moreover, our method shows greater robustness compared to supervised methods when evaluated in out-of-domain scenarios. This research provides insight into the potential of aligning widely-used models, such as language generation models and vision-language models, to unlock a new capability: understanding temporal aspects of videos.
Prompt Injection: Parameterization of Fixed Inputs
Choi, Eunbi, Jo, Yongrae, Jang, Joel, Seo, Minjoon
Recent works have shown that attaching prompts to the input is effective at conditioning Language Models (LM) to perform specific tasks. However, prompts are always included in the input text during inference, thus incurring substantial computational and memory overhead. Also, there is currently no straightforward method of utilizing prompts that are longer than the maximum input length of the LMs without incurring additional costs during inference. We propose Prompt Injection (PI), a novel formulation of injecting the prompt into the parameters of an LM to be an efficient alternative to attaching fixed prompts to the input. We show that in scenarios with long fixed prompts, PI can be up to 280 times more efficient in terms of total FLOPs than previous approaches. We further explore methodologies for PI and show promising results in persona-dependent conversation, semantic parsing, and zero-shot learning with task instructions. Through these explorations, we show that PI can be a promising direction for conditioning language models, especially in scenarios with long and fixed prompts.