Jinnai, Yuu
Theoretical Guarantees for Minimum Bayes Risk Decoding
Ichihara, Yuki, Jinnai, Yuu, Ariu, Kaito, Morimura, Tetsuro, Uchibe, Eiji
Minimum Bayes Risk (MBR) decoding optimizes output selection by maximizing the expected utility value of an underlying human distribution. While prior work has shown the effectiveness of MBR decoding through empirical evaluation, few studies have analytically investigated why the method is effective. As a result of our analysis, we show that, given the size $n$ of the reference hypothesis set used in computation, MBR decoding approaches the optimal solution with high probability at a rate of $O\left(n^{-\frac{1}{2}}\right)$, under certain assumptions, even though the language space $Y$ is significantly larger $Y\gg n$. This result helps to theoretically explain the strong performance observed in several prior empirical studies on MBR decoding. In addition, we provide the performance gap for maximum-a-posteriori (MAP) decoding and compare it to MBR decoding. The result of this paper indicates that MBR decoding tends to converge to the optimal solution faster than MAP decoding in several cases.
Evaluation of Best-of-N Sampling Strategies for Language Model Alignment
Ichihara, Yuki, Jinnai, Yuu, Morimura, Tetsuro, Ariu, Kaito, Abe, Kenshi, Sakamoto, Mitsuki, Uchibe, Eiji
Best-of-N (BoN) sampling with a reward model has been shown to be an effective strategy for aligning Large Language Models (LLMs) with human preferences at the time of decoding. BoN sampling is susceptible to a problem known as reward hacking. Since the reward model is an imperfect proxy for the true objective, an excessive focus on optimizing its value can lead to a compromise of its performance on the true objective. Previous work proposes Regularized BoN sampling (RBoN), a BoN sampling with regularization to the objective, and shows that it outperforms BoN sampling so that it mitigates reward hacking and empirically (Jinnai et al., 2024). However, Jinnai et al. (2024) introduce RBoN based on a heuristic and they lack the analysis of why such regularization strategy improves the performance of BoN sampling. The aim of this study is to analyze the effect of BoN sampling on regularization strategies. Using the regularization strategies corresponds to robust optimization, which maximizes the worst case over a set of possible perturbations in the proxy reward. Although the theoretical guarantees are not directly applicable to RBoN, RBoN corresponds to a practical implementation. This paper proposes an extension of the RBoN framework, called Stochastic RBoN sampling (SRBoN), which is a theoretically guaranteed approach to worst-case RBoN in proxy reward. We then perform an empirical evaluation using the AlpacaFarm and Anthropic's hh-rlhf datasets to evaluate which factors of the regularization strategies contribute to the improvement of the true proxy reward. In addition, we also propose another simple RBoN method, the Sentence Length Regularized BoN, which has a better performance in the experiment as compared to the previous methods.
Does Cross-Cultural Alignment Change the Commonsense Morality of Language Models?
Jinnai, Yuu
Alignment of the language model with human preferences is a common approach to making a language model useful to end users. However, most alignment work is done in English, and human preference datasets are dominated by English, reflecting only the preferences of English-speaking annotators. Nevertheless, it is common practice to use the English preference data, either directly or by translating it into the target language, when aligning a multilingual language model. The question is whether such an alignment strategy marginalizes the preference of non-English speaking users. To this end, we investigate the effect of aligning Japanese language models with (mostly) English resources. In particular, we focus on evaluating whether the commonsense morality of the resulting fine-tuned models is aligned with Japanese culture using the JCommonsenseMorality (JCM) and ETHICS datasets. The experimental results show that the fine-tuned model outperforms the SFT model. However, it does not demonstrate the same level of improvement as a model fine-tuned using the JCM, suggesting that while some aspects of commonsense morality are transferable, others may not be.
Regularized Best-of-N Sampling to Mitigate Reward Hacking for Language Model Alignment
Jinnai, Yuu, Morimura, Tetsuro, Ariu, Kaito, Abe, Kenshi
Best-of-N (BoN) sampling with a reward model has been shown to be an effective strategy for aligning Large Language Models (LLMs) to human preferences at the time of decoding. BoN sampling is susceptible to a problem known as reward hacking. Because the reward model is an imperfect proxy for the true objective, over-optimizing its value can compromise its performance on the true objective. A common solution to prevent reward hacking in preference learning techniques is to optimize a reward using proximity regularization (e.g., KL regularization), which ensures that the language model remains close to the reference model. In this research, we propose Regularized Best-of-N (RBoN), a variant of BoN that aims to mitigate reward hacking by incorporating a proximity term in response selection, similar to preference learning techniques. We evaluate RBoN on the AlpacaFarm and Anthropic's hh-rlhf datasets and find that it outperforms BoN. As an application of RBoN, we use RBoN to generate a pairwise preference learning dataset. Experimental results show that a DPO model trained on a dataset generated with RBoN outperforms a DPO model generated with vanilla BoN. Our code is available at https://github.com/CyberAgentAILab/regularized-bon
Annotation-Efficient Preference Optimization for Language Model Alignment
Jinnai, Yuu, Honda, Ukyo
Preference optimization is a standard approach to fine-tuning large language models to align with human preferences. The quality, diversity, and quantity of the preference dataset are critical to the effectiveness of preference optimization. However, obtaining a large amount of high-quality and diverse preference annotations is difficult in many applications. This raises the question of how to use the limited annotation budget to create an effective preference dataset. To this end, we propose Annotation-Efficient Preference Optimization (AEPO). Instead of exhaustively annotating preference over all available response texts, AEPO selects a subset of responses that maximizes quality and diversity from the available responses, and then annotates preference over the selected ones. In this way, AEPO focuses the annotation budget on labeling preference over a smaller subset of responses with diversity and of high quality. We evaluate the performance of Direct Preference Optimization (DPO) using AEPO and show that it outperforms models trained using a standard DPO with the same annotation budget.
On the True Distribution Approximation of Minimum Bayes-Risk Decoding
Ohashi, Atsumoto, Honda, Ukyo, Morimura, Tetsuro, Jinnai, Yuu
Minimum Bayes-risk (MBR) decoding has recently gained renewed attention in text generation. MBR decoding considers texts sampled from a model as pseudo-references and selects the text with the highest similarity to the others. Therefore, sampling is one of the key elements of MBR decoding, and previous studies reported that the performance varies by sampling methods. From a theoretical standpoint, this performance variation is likely tied to how closely the samples approximate the true distribution of references. However, this approximation has not been the subject of in-depth study. In this study, we propose using anomaly detection to measure the degree of approximation. We first closely examine the performance variation and then show that previous hypotheses about samples do not correlate well with the variation, but our introduced anomaly scores do. The results are the first to empirically support the link between the performance and the core assumption of MBR decoding.
Generating Diverse and High-Quality Texts by Minimum Bayes Risk Decoding
Jinnai, Yuu, Honda, Ukyo, Morimura, Tetsuro, Zhang, Peinan
One of the most important challenges in text generation systems is to produce outputs that are not only correct but also diverse. Recently, Minimum Bayes-Risk (MBR) decoding has gained prominence for generating sentences of the highest quality among the decoding algorithms. However, existing algorithms proposed for generating diverse outputs are predominantly based on beam search or random sampling, thus their output quality is capped by these underlying methods. In this paper, we investigate an alternative approach -- we develop diversity-promoting decoding algorithms by enforcing diversity objectives to MBR decoding. We propose two variants of MBR, Diverse MBR (DMBR) and $k$-medoids MBR (KMBR), methods to generate a set of sentences with high quality and diversity. We evaluate DMBR and KMBR on a variety of directed text generation tasks using encoder-decoder models and a large language model with prompting. The experimental results show that the proposed method achieves a better trade-off than the diverse beam search and sampling algorithms.
Hyperparameter-Free Approach for Faster Minimum Bayes Risk Decoding
Jinnai, Yuu, Ariu, Kaito
Minimum Bayes-Risk (MBR) decoding is shown to be a powerful alternative to beam search decoding for a wide range of text generation tasks. However, MBR requires a huge amount of time for inference to compute the MBR objective, which makes the method infeasible in many situations where response time is critical. Confidence-based pruning (CBP) (Cheng and Vlachos, 2023) has recently been proposed to reduce the inference time in machine translation tasks. Although it is shown to significantly reduce the amount of computation, it requires hyperparameter tuning using a development set to be effective. To this end, we propose Approximate Minimum Bayes-Risk (AMBR) decoding, a hyperparameter-free method to run MBR decoding approximately. AMBR is derived from the observation that the problem of computing the sample-based MBR objective is the medoid identification problem. AMBR uses the Correlated Sequential Halving (CSH) algorithm (Baharav and Tse, 2019), the best approximation algorithm to date for the medoid identification problem, to compute the sample-based MBR objective. We evaluate AMBR on machine translation, text summarization, and image captioning tasks. The results show that AMBR achieves on par with CBP, with CBP selecting hyperparameters through an Oracle for each given computation budget.
Model-Based Minimum Bayes Risk Decoding
Jinnai, Yuu, Morimura, Tetsuro, Honda, Ukyo, Ariu, Kaito, Abe, Kenshi
Minimum Bayes Risk (MBR) decoding has been shown to be a powerful alternative to beam search decoding in a variety of text generation tasks. MBR decoding selects a hypothesis from a pool of hypotheses that has the least expected risk under a probability model according to a given utility function. Since it is impractical to compute the expected risk exactly over all possible hypotheses, two approximations are commonly used in MBR. First, it integrates over a sampled set of hypotheses rather than over all possible hypotheses. Second, it estimates the probability of each hypothesis using a Monte Carlo estimator. While the first approximation is necessary to make it computationally feasible, the second is not essential since we typically have access to the model probability at inference time. We propose Model-Based MBR (MBMBR), a variant of MBR that uses the model probability itself as the estimate of the probability distribution instead of the Monte Carlo estimate. We show analytically and empirically that the model-based estimate is more promising than the Monte Carlo estimate in text generation tasks. Our experiments show that MBMBR outperforms MBR in several text generation tasks, both with encoder-decoder models and with large language models.
On the Depth between Beam Search and Exhaustive Search for Text Generation
Jinnai, Yuu, Morimura, Tetsuro, Honda, Ukyo
Beam search and exhaustive search are two extreme ends of text decoding algorithms with respect to the search depth. Beam search is limited in both search width and depth, whereas exhaustive search is a global search that has no such limitations. Surprisingly, beam search is not only computationally cheaper but also performs better than exhaustive search despite its higher search error. Plenty of research has investigated a range of beam widths, from small to large, and reported that a beam width that is neither too large nor too small is desirable. However, in terms of search depth, only the two extreme ends, beam search and exhaustive search are studied intensively. In this paper, we examine a range of search depths between the two extremes to discover the desirable search depth. To this end, we introduce Lookahead Beam Search (LBS), a multi-step lookahead search that optimizes the objective considering a fixed number of future steps. Beam search and exhaustive search are special cases of LBS where the lookahead depth is set to $0$ and $\infty$, respectively. We empirically evaluate the performance of LBS and find that it outperforms beam search overall on machine translation tasks. The result suggests there is room for improvement in beam search by searching deeper. Inspired by the analysis, we propose Lookbehind Heuristic Beam Search, a computationally feasible search algorithm that heuristically simulates LBS with 1-step lookahead. The empirical results show that the proposed method outperforms vanilla beam search on machine translation and text summarization tasks.