Goto

Collaborating Authors

 Jing, Xiao-Yuan


Source-free domain adaptation based on label reliability for cross-domain bearing fault diagnosis

arXiv.org Artificial Intelligence

Source-free domain adaptation (SFDA) has been exploited for cross-domain bearing fault diagnosis without access to source data. Current methods select partial target samples with reliable pseudo-labels for model adaptation, which is sub-optimal due to the ignored target samples. We argue that every target sample can contribute to model adaptation, and accordingly propose in this paper a novel SFDA-based approach for bearing fault diagnosis that exploits both reliable and unreliable pseudo-labels. We develop a data-augmentation-based label voting strategy to divide the target samples into reliable and unreliable ones. We propose to explore the underlying relation between feature space and label space by using the reliable pseudo-labels as ground-truth labels, meanwhile, alleviating negative transfer by maximizing the entropy of the unreliable pseudo-labels. The proposed method achieves well-balance between discriminability and diversity by taking advantage of reliable and unreliable pseudo-labels. Extensive experiments are conducted on two bearing fault benchmarks, demonstrating that our approach achieves significant performance improvements against existing SFDA-based bearing fault diagnosis methods. Our code is available at https://github.com/BdLab405/SDALR.


Multi-view Hybrid Embedding: A Divide-and-Conquer Approach

arXiv.org Machine Learning

We present a novel cross-view classification algorithm where the gallery and probe data come from different views. A popular approach to tackle this problem is the multi-view subspace learning (MvSL) that aims to learn a latent subspace shared by multi-view data. Despite promising results obtained on some applications, the performance of existing methods deteriorates dramatically when the multi-view data is sampled from nonlinear manifolds or suffers from heavy outliers. To circumvent this drawback, motivated by the Divide-and-Conquer strategy, we propose Multi-view Hybrid Embedding (MvHE), a unique method of dividing the problem of cross-view classification into three subproblems and building one model for each subproblem. Specifically, the first model is designed to remove view discrepancy, whereas the second and third models attempt to discover the intrinsic nonlinear structure and to increase discriminability in intra-view and inter-view samples respectively. The kernel extension is conducted to further boost the representation power of MvHE. Extensive experiments are conducted on four benchmark datasets. Our methods demonstrate overwhelming advantages against the state-of-the-art MvSL based cross-view classification approaches in terms of classification accuracy and robustness.


Multi-Kernel Low-Rank Dictionary Pair Learning for Multiple Features Based Image Classification

AAAI Conferences

Dictionary learning (DL) is an effective feature learning technique, and has led to interesting results in many classification tasks. Recently, by combining DL with multiple kernel learning (which is a crucial and effective technique for combining different feature representation information), a few multi-kernel DL methods have been presented to solve the multiple feature representations based classification problem. However, how to improve the representation capability and discriminability of multi-kernel dictionary has not been well studied. In this paper, we propose a novel multi-kernel DL approach, named multi-kernel low-rank dictionary pair learning (MKLDPL). Specifically, MKLDPL jointly learns a kernel synthesis dictionary and a kernel analysis dictionary by exploiting the class label information. The learned synthesis and analysis dictionaries work together to implement the coding and reconstruction of samples in the kernel space. To enhance the discriminability of the learned multi-kernel dictionaries, MKLDPL imposes the low-rank regularization on the analysis dictionary, which can make samples from the same class have similar representations. We apply MKLDPL for multiple features based image classification task. Experimental results demonstrate the effectiveness of the proposed approach.


Multiset Feature Learning for Highly Imbalanced Data Classification

AAAI Conferences

With the expansion of data, increasing imbalanced data has emerged. When the imbalance ratio of data is high, most existing imbalanced learning methods decline in classification performance. To address this problem, a few highly imbalanced learning methods have been presented. However, most of them are still sensitive to the high imbalance ratio. This work aims to provide an effective solution for the highly imbalanced data classification problem. We conduct highly imbalanced learning from the perspective of feature learning. We partition the majority class into multiple blocks with each being balanced to the minority class and combine each block with the minority class to construct a balanced sample set. Multiset feature learning (MFL) is performed on these sets to learn discriminant features. We thus propose an uncorrelated cost-sensitive multiset learning (UCML) approach. UCML provides a multiple sets construction strategy, incorporates the cost-sensitive factor into MFL, and designs a weighted uncorrelated constraint to remove the correlation among multiset features. Experiments on five highly imbalanced datasets indicate that: UCML outperforms state-of-the-art imbalanced learning methods.


Semi-Supervised Multi-View Correlation Feature Learning with Application to Webpage Classification

AAAI Conferences

Webpage classification has attracted a lot of research interest. Webpage data is often multi-view and high-dimensional, and the webpage classification application is usually semi-supervised. Due to these characteristics, using semi-supervised multi-view feature learning (SMFL) technique to deal with the webpage classification problem has recently received much attention. However, there still exists room for improvement for this kind of feature learning technique. How to effectively utilize the correlation information among multi-view of webpage data is an important research topic. Correlation analysis on multi-view data can facilitate extraction of the complementary information. In this paper, we propose a novel SMFL approach, named semi-supervised multi-view correlation feature learning (SMCFL), for webpage classification. SMCFL seeks for a discriminant common space by learning a multi-view shared transformation in a semi-supervised manner. In the discriminant space, the correlation between intra-class samples is maximized, and the correlation between inter-class samples and the global correlation among both labeled and unlabeled samples are minimized simultaneously. We transform the matrix-variable based nonconvex objective function of SMCFL into a convex quadratic programming problem with one real variable, and can achieve a global optimal solution. Experiments on widely used datasets demonstrate the effectiveness and efficiency of the proposed approach.


Learning Heterogeneous Dictionary Pair with Feature Projection Matrix for Pedestrian Video Retrieval via Single Query Image

AAAI Conferences

Person re-identification (re-id) plays an important role in video surveillance and forensics applications. In many cases, person re-id needs to be conducted between image and video clip, e.g., re-identifying a suspect from large quantities of pedestrian videos given a single image of him. We call re-id in this scenario as image to video person re-id (IVPR). In practice, image and video are usually represented with different features, and there usually exist large variations between frames within each video. These factors make matching between image and video become a very challenging task. In this paper, we propose a joint feature projection matrix and heterogeneous dictionary pair learning (PHDL) approach for IVPR. Specifically, PHDL jointly learns an intra-video projection matrix and a pair of heterogeneous image and video dictionaries. With the learned projection matrix, the influence of variations within each video to the matching can be reduced. With the learned dictionary pair, the heterogeneous image and video features can be transformed into coding coefficients with the same dimension, such that the matching can be conducted using coding coefficients. Furthermore, to ensure that the obtained coding coefficients have favorable discriminability, PHDL designs a point-to-set coefficient discriminant term. Experiments on the public iLIDS-VID and PRID 2011 datasets demonstrate the effectiveness of the proposed approach.


Intra-View and Inter-View Supervised Correlation Analysis for Multi-View Feature Learning

AAAI Conferences

Multi-view feature learning is an attractive research topic with great practical success. Canonical correlation analysis (CCA) has become an important technique in multi-view learning, since it can fully utilize the inter-view correlation. In this paper, we mainly study the CCA based multi-view supervised feature learning technique where the labels of training samples are known. Several supervised CCA based multi-view methods have been presented, which focus on investigating the supervised correlation across different views. However, they take no account of the intra-view correlation between samples. Researchers have also introduced the discriminant analysis technique into multi-view feature learning, such as multi-view discriminant analysis (MvDA). But they ignore the canonical correlation within each view and between all views. In this paper, we propose a novel multi-view feature learning approach based on intra-view and inter-view supervised correlation analysis (I2SCA), which can explore the useful correlation information of samples within each view and between all views. The objective function of I2SCA is designed to simultaneously extract the discriminatingly correlated features from both inter-view and intra-view. It can obtain an analytical solution without iterative calculation. And we provide a kernelized extension of I2SCA to tackle the linearly inseparable problem in the original feature space. Four widely-used datasets are employed as test data. Experimental results demonstrate that our proposed approaches outperform several representative multi-view supervised feature learning methods.


Uncorrelated Multi-View Discrimination Dictionary Learning for Recognition

AAAI Conferences

Dictionary learning (DL) has now become an important feature learning technique that owns state-of-the-art recognition performance. Due to sparse characteristic of data in real-world applications, DL uses a set of learned dictionary bases to represent the linear decomposition of a data point. Fisher discrimination DL (FDDL) is a representative supervised DL method, which constructs a structured dictionary whose atoms correspond to the class labels. Recent years have witnessed a growing interest in multi-view (more than two views) feature learning techniques. Although some multi-view (or multi-modal) DL methods have been presented, there still exists much room for improvement. How to enhance the total discriminability of dictionaries and reduce their redundancy is a crucial research topic. To boost the performance of multi-view DL technique, we propose an uncorrelated multi-view discrimination DL (UMDDL) approach for recognition. By making dictionary atoms correspond to the class labels such that the obtained reconstruction error is discriminative, UMDDL aims to jointly learn multiple dictionaries with totally favorable discriminative power. Furthermore, we design the uncorrelated constraint for multi-view DL, so as to reduce the redundancy among dictionaries learned from different views. Experiments on several public datasets demonstrate the effectiveness of the proposed approach.