Jing, Liping
Maximum Redundancy Pruning: A Principle-Driven Layerwise Sparsity Allocation for LLMs
Gao, Chang, Zhao, Kang, Chen, Jianfei, Jing, Liping
Large language models (LLMs) have demonstrated impressive capabilities, but their enormous size poses significant challenges for deployment in real-world applications. To address this issue, researchers have sought to apply network pruning techniques to LLMs. A critical challenge in pruning is allocation the sparsity for each layer. Recent sparsity allocation methods is often based on heuristics or search that can easily lead to suboptimal performance. In this paper, we conducted an extensive investigation into various LLMs and revealed three significant discoveries: (1) the layerwise pruning sensitivity (LPS) of LLMs is highly non-uniform, (2) the choice of pruning metric affects LPS, and (3) the performance of a sparse model is related to the uniformity of its layerwise redundancy level. Based on these observations, we propose that the layerwise sparsity of LLMs should adhere to three principles: \emph{non-uniformity}, \emph{pruning metric dependency}, and \emph{uniform layerwise redundancy level} in the pruned model. To this end, we proposed Maximum Redundancy Pruning (MRP), an iterative pruning algorithm that prunes in the most redundant layers (\emph{i.e.}, those with the highest non-outlier ratio) at each iteration. The achieved layerwise sparsity aligns with the outlined principles. We conducted extensive experiments on publicly available LLMs, including the LLaMA2 and OPT, across various benchmarks. Experimental results validate the effectiveness of MRP, demonstrating its superiority over previous methods.
Beyond 2:4: exploring V:N:M sparsity for efficient transformer inference on GPUs
Zhao, Kang, Yuan, Tao, Bao, Han, Su, Zhenfeng, Gao, Chang, Sun, Zhaofeng, Liang, Zichen, Jing, Liping, Chen, Jianfei
To date, 2:4 sparsity has stood as the only sparse pattern that can be accelerated using sparse tensor cores on GPUs. In practice, 2:4 sparsity often possesses low actual speedups ($\leq 1.3$) and requires fixed sparse ratios, meaning that other ratios, such as 4:8, 8:16, or those exceeding 50% sparsity, do not incur any speedups on GPUs. Recent studies suggest that V:N:M sparsity is promising in addressing these limitations of 2:4 sparsity. However, regarding accuracy, the effects of V:N:M sparsity on broader Transformer models, such as vision Transformers and large language models (LLMs), are largely unexamined. Moreover, Some specific issues related to V:N:M sparsity, such as how to select appropriate V and M values, remain unresolved. In this study, we thoroughly investigate the application of V:N:M sparsity in vision models and LLMs across multiple tasks, from pertaining to downstream tasks. We propose three key approaches to enhance the applicability and accuracy of V:N:M-sparse Transformers, including heuristic V and M selection, V:N:M-specific channel permutation, and three-staged LoRA training techniques. Experimental results show that, with our methods, the DeiT-small achieves lossless accuracy at 64:2:5 sparsity, while the DeiT-base maintains accuracy even at 64:2:8 sparsity. In addition, the fine-tuned LLama2-7B at 64:2:5 sparsity performs comparably or better than training-free 2:4 sparse alternatives on downstream tasks. More importantly, V:N:M-sparse Transformers offer a wider range of speedup-accuracy trade-offs compared to 2:4 sparsity. Overall, our exploration largely facilitates the V:N:M sparsity to act as a truly effective acceleration solution for Transformers in cost-sensitive inference scenarios.
SS-Bench: A Benchmark for Social Story Generation and Evaluation
Feng, Yi, Song, Mingyang, Wang, Jiaqi, Zheng, Mao, Jing, Liping, Yu, Jian
Children with Autism Spectrum Disorder (ASD) often misunderstand social situations and struggle to participate in daily routines. Psychology experts write Social Stories under strict constraints of structural clarity, descriptive orientation, and situational safety to enhance their abilities in these regimes. However, Social Stories are costly in creation and often limited in diversity and timeliness. As Large Language Models (LLMs) become increasingly powerful, there is a growing need for more automated, affordable, and accessible methods to generate Social Stories in real-time with broad coverage. Adapting LLMs to meet the unique and strict constraints of Social Stories is a challenging issue. To this end, we propose \textbf{SS-Bench}, a \textbf{S}ocial \textbf{S}tory \textbf{Bench}mark for generating and evaluating Social Stories. Specifically, we develop a constraint-driven strategy named \textbf{\textsc{StarSow}} to hierarchically prompt LLMs to generate Social Stories and build a benchmark, which has been validated through experiments to fine-tune smaller models for generating qualified Social Stories. Additionally, we introduce \textbf{Quality Assessment Criteria}, employed in human and GPT evaluations, to verify the effectiveness of the generated stories. We hope this work benefits the autism community and catalyzes future research focusing on particular groups.
A Preliminary Empirical Study on Prompt-based Unsupervised Keyphrase Extraction
Song, Mingyang, Feng, Yi, Jing, Liping
Pre-trained large language models can perform natural language processing downstream tasks by conditioning on human-designed prompts. However, a prompt-based approach often requires "prompt engineering" to design different prompts, primarily hand-crafted through laborious trial and error, requiring human intervention and expertise. It is a challenging problem when constructing a prompt-based keyphrase extraction method. Therefore, we investigate and study the effectiveness of different prompts on the keyphrase extraction task to verify the impact of the cherry-picked prompts on the performance of extracting keyphrases. Extensive experimental results on six benchmark keyphrase extraction datasets and different pre-trained large language models demonstrate that (1) designing complex prompts may not necessarily be more effective than designing simple prompts; (2) individual keyword changes in the designed prompts can affect the overall performance; (3) designing complex prompts achieve better performance than designing simple prompts when facing long documents.
Large Language Models as Zero-Shot Keyphrase Extractors: A Preliminary Empirical Study
Song, Mingyang, Geng, Xuelian, Yao, Songfang, Lu, Shilong, Feng, Yi, Jing, Liping
Zero-shot keyphrase extraction aims to build a keyphrase extractor without training by human-annotated data, which is challenging due to the limited human intervention involved. Challenging but worthwhile, zero-shot setting efficiently reduces the time and effort that data labeling takes. Recent efforts on pre-trained large language models (e.g., ChatGPT and ChatGLM) show promising performance on zero-shot settings, thus inspiring us to explore prompt-based methods. In this paper, we ask whether strong keyphrase extraction models can be constructed by directly prompting the large language model ChatGPT. Through experimental results, it is found that ChatGPT still has a lot of room for improvement in the keyphrase extraction task compared to existing state-of-the-art unsupervised and supervised models.
Is ChatGPT A Good Keyphrase Generator? A Preliminary Study
Song, Mingyang, Jiang, Haiyun, Shi, Shuming, Yao, Songfang, Lu, Shilong, Feng, Yi, Liu, Huafeng, Jing, Liping
The emergence of ChatGPT has recently garnered significant attention from the computational linguistics community. To demonstrate its capabilities as a keyphrase generator, we conduct a preliminary evaluation of ChatGPT for the keyphrase generation task. We evaluate its performance in various aspects, including keyphrase generation prompts, keyphrase generation diversity, and long document understanding. Our evaluation is based on six benchmark datasets, and we adopt the prompt suggested by OpenAI while extending it to six candidate prompts. We find that ChatGPT performs exceptionally well on all six candidate prompts, with minor performance differences observed across the datasets. Based on our findings, we conclude that ChatGPT has great potential for keyphrase generation. Moreover, we discover that ChatGPT still faces challenges when it comes to generating absent keyphrases. Meanwhile, in the final section, we also present some limitations and future expansions of this report.
Hyperbolic Relevance Matching for Neural Keyphrase Extraction
Song, Mingyang, Feng, Yi, Jing, Liping
Keyphrase extraction is a fundamental task in natural language processing and information retrieval that aims to extract a set of phrases with important information from a source document. Identifying important keyphrase is the central component of the keyphrase extraction task, and its main challenge is how to represent information comprehensively and discriminate importance accurately. In this paper, to address these issues, we design a new hyperbolic matching model (HyperMatch) to represent phrases and documents in the same hyperbolic space and explicitly estimate the phrase-document relevance via the Poincar\'e distance as the important score of each phrase. Specifically, to capture the hierarchical syntactic and semantic structure information, HyperMatch takes advantage of the hidden representations in multiple layers of RoBERTa and integrates them as the word embeddings via an adaptive mixing layer. Meanwhile, considering the hierarchical structure hidden in the document, HyperMatch embeds both phrases and documents in the same hyperbolic space via a hyperbolic phrase encoder and a hyperbolic document encoder. This strategy can further enhance the estimation of phrase-document relevance due to the good properties of hyperbolic space. In this setting, the keyphrase extraction can be taken as a matching problem and effectively implemented by minimizing a hyperbolic margin-based triplet loss. Extensive experiments are conducted on six benchmarks and demonstrate that HyperMatch outperforms the state-of-the-art baselines.
Importance Estimation from Multiple Perspectives for Keyphrase Extraction
Song, Mingyang, Jing, Liping, Xiao, Lin
Keyphrase extraction is a fundamental task in Natural Language Processing, which usually contains two main parts: candidate keyphrase extraction and keyphrase importance estimation. From the view of human understanding documents, we typically measure the importance of phrase according to its syntactic accuracy, information saliency, and concept consistency simultaneously. However, most existing keyphrase extraction approaches only focus on the part of them, which leads to biased results. In this paper, we propose a new approach to estimate the importance of keyphrase from multiple perspectives (called as \textit{KIEMP}) and further improve the performance of keyphrase extraction. Specifically, \textit{KIEMP} estimates the importance of phrase with three modules: a chunking module to measure its syntactic accuracy, a ranking module to check its information saliency, and a matching module to judge the concept (i.e., topic) consistency between phrase and the whole document. These three modules are seamlessly jointed together via an end-to-end multi-task learning model, which is helpful for three parts to enhance each other and balance the effects of three perspectives. Experimental results on six benchmark datasets show that \textit{KIEMP} outperforms the existing state-of-the-art keyphrase extraction approaches in most cases.
Overcoming Recency Bias of Normalization Statistics in Continual Learning: Balance and Adaptation
Lyu, Yilin, Wang, Liyuan, Zhang, Xingxing, Sun, Zicheng, Su, Hang, Zhu, Jun, Jing, Liping
Continual learning entails learning a sequence of tasks and balancing their knowledge appropriately. With limited access to old training samples, much of the current work in deep neural networks has focused on overcoming catastrophic forgetting of old tasks in gradient-based optimization. However, the normalization layers provide an exception, as they are updated interdependently by the gradient and statistics of currently observed training samples, which require specialized strategies to mitigate recency bias. In this work, we focus on the most popular Batch Normalization (BN) and provide an in-depth theoretical analysis of its sub-optimality in continual learning. Our analysis demonstrates the dilemma between balance and adaptation of BN statistics for incremental tasks, which potentially affects training stability and generalization. Targeting on these particular challenges, we propose Adaptive Balance of BN (AdaB$^2$N), which incorporates appropriately a Bayesian-based strategy to adapt task-wise contributions and a modified momentum to balance BN statistics, corresponding to the training and testing stages. By implementing BN in a continual learning fashion, our approach achieves significant performance gains across a wide range of benchmarks, particularly for the challenging yet realistic online scenarios (e.g., up to 7.68%, 6.86% and 4.26% on Split CIFAR-10, Split CIFAR-100 and Split Mini-ImageNet, respectively). Our code is available at https://github.com/lvyilin/AdaB2N.
Recognizable Information Bottleneck
Lyu, Yilin, Liu, Xin, Song, Mingyang, Wang, Xinyue, Peng, Yaxin, Zeng, Tieyong, Jing, Liping
Information Bottlenecks (IBs) learn representations that generalize to unseen data by information compression. However, existing IBs are practically unable to guarantee generalization in real-world scenarios due to the vacuous generalization bound. The recent PAC-Bayes IB uses information complexity instead of information compression to establish a connection with the mutual information generalization bound. However, it requires the computation of expensive second-order curvature, which hinders its practical application. In this paper, we establish the connection between the recognizability of representations and the recent functional conditional mutual information (f-CMI) generalization bound, which is significantly easier to estimate. On this basis we propose a Recognizable Information Bottleneck (RIB) which regularizes the recognizability of representations through a recognizability critic optimized by density ratio matching under the Bregman divergence. Extensive experiments on several commonly used datasets demonstrate the effectiveness of the proposed method in regularizing the model and estimating the generalization gap.