Goto

Collaborating Authors

 Jin-Hwa Kim


Overcoming Catastrophic Forgetting by Incremental Moment Matching

Neural Information Processing Systems

Catastrophic forgetting is a problem of neural networks that loses the information of the first task after training the second task. Here, we propose a method, i.e. incremental moment matching (IMM), to resolve this problem. IMM incrementally matches the moment of the posterior distribution of the neural network which is trained on the first and the second task, respectively. To make the search space of posterior parameter smooth, the IMM procedure is complemented by various transfer learning techniques including weight transfer, L2-norm of the old and the new parameter, and a variant of dropout with the old parameter. We analyze our approach on a variety of datasets including the MNIST, CIFAR-10, Caltech-UCSD-Birds, and Lifelog datasets. The experimental results show that IMM achieves state-of-the-art performance by balancing the information between an old and a new network.


Bilinear Attention Networks

Neural Information Processing Systems

Attention networks in multimodal learning provide an efficient way to utilize given visual information selectively. However, the computational cost to learn attention distributions for every pair of multimodal input channels is prohibitively expensive. To solve this problem, co-attention builds two separate attention distributions for each modality neglecting the interaction between multimodal inputs. In this paper, we propose bilinear attention networks (BAN) that find bilinear attention distributions to utilize given vision-language information seamlessly. BAN considers bilinear interactions among two groups of input channels, while low-rank bilinear pooling extracts the joint representations for each pair of channels. Furthermore, we propose a variant of multimodal residual networks to exploit eight-attention maps of the BAN efficiently. We quantitatively and qualitatively evaluate our model on visual question answering (VQA 2.0) and Flickr30k Entities datasets, showing that BAN significantly outperforms previous methods and achieves new state-of-the-arts on both datasets.



Multimodal Residual Learning for Visual QA

Neural Information Processing Systems

Deep neural networks continue to advance the state-of-the-art of image recognition tasks with various methods. However, applications of these methods to multimodality remain limited. We present Multimodal Residual Networks (MRN) for the multimodal residual learning of visual question-answering, which extends the idea of the deep residual learning. Unlike the deep residual learning, MRN effectively learns the joint representation from vision and language information. The main idea is to use element-wise multiplication for the joint residual mappings exploiting the residual learning of the attentional models in recent studies. Various alternative models introduced by multimodality are explored based on our study. We achieve the state-of-the-art results on the Visual QA dataset for both Open-Ended and Multiple-Choice tasks. Moreover, we introduce a novel method to visualize the attention effect of the joint representations for each learning block using back-propagation algorithm, even though the visual features are collapsed without spatial information.


Overcoming Catastrophic Forgetting by Incremental Moment Matching

Neural Information Processing Systems

Catastrophic forgetting is a problem of neural networks that loses the information of the first task after training the second task. Here, we propose a method, i.e. incremental moment matching (IMM), to resolve this problem. IMM incrementally matches the moment of the posterior distribution of the neural network which is trained on the first and the second task, respectively. To make the search space of posterior parameter smooth, the IMM procedure is complemented by various transfer learning techniques including weight transfer, L2-norm of the old and the new parameter, and a variant of dropout with the old parameter. We analyze our approach on a variety of datasets including the MNIST, CIFAR-10, Caltech-UCSD-Birds, and Lifelog datasets. The experimental results show that IMM achieves state-of-the-art performance by balancing the information between an old and a new network.