Goto

Collaborating Authors

 Jin, Zhiwei


Learn over Past, Evolve for Future: Forecasting Temporal Trends for Fake News Detection

arXiv.org Artificial Intelligence

Fake news detection has been a critical task for maintaining the health of the online news ecosystem. However, very few existing works consider the temporal shift issue caused by the rapidly-evolving nature of news data in practice, resulting in significant performance degradation when training on past data and testing on future data. In this paper, we observe that the appearances of news events on the same topic may display discernible patterns over time, and posit that such patterns can assist in selecting training instances that could make the model adapt better to future data. Specifically, we design an effective framework FTT (Forecasting Temporal Trends), which could forecast the temporal distribution patterns of news data and then guide the detector to fast adapt to future distribution. Experiments on the real-world temporally split dataset demonstrate the superiority of our proposed framework. The code is available at https://github.com/ICTMCG/FTT-ACL23.


News Verification by Exploiting Conflicting Social Viewpoints in Microblogs

AAAI Conferences

Fake news spreading in social media severely jeopardizes the veracity of online content. Fortunately, with the interactive and open features of microblogs, skeptical and opposing voices against fake news always arise along with it. The conflicting information, ignored by existing studies, is crucial for news verification. In this paper, we take advantage of this "wisdom of crowds" information to improve news verification by mining conflicting viewpoints in microblogs. First, we discover conflicting viewpoints in news tweets with a topic model method. Based on identified tweets' viewpoints, we then build a credibility propagation network of tweets linked with supporting or opposing relations. Finally, with iterative deduction, the credibility propagation on the network generates the final evaluation result for news. Experiments conducted on a real-world data set show that the news verification performance of our approach significantly outperforms those of the baseline approaches.