Jin, Yeying
ExGes: Expressive Human Motion Retrieval and Modulation for Audio-Driven Gesture Synthesis
Zhou, Xukun, Li, Fengxin, Chen, Ming, Zhou, Yan, Wan, Pengfei, Zhang, Di, Jin, Yeying, Fan, Zhaoxin, Liu, Hongyan, He, Jun
Audio-driven human gesture synthesis is a crucial task with broad applications in virtual avatars, human-computer interaction, and creative content generation. Despite notable progress, existing methods often produce gestures that are coarse, lack expressiveness, and fail to fully align with audio semantics. To address these challenges, we propose ExGes, a novel retrieval-enhanced diffusion framework with three key designs: (1) a Motion Base Construction, which builds a gesture library using training dataset; (2) a Motion Retrieval Module, employing constrative learning and momentum distillation for fine-grained reference poses retreiving; and (3) a Precision Control Module, integrating partial masking and stochastic masking to enable flexible and fine-grained control. Experimental evaluations on BEAT2 demonstrate that ExGes reduces Fr\'echet Gesture Distance by 6.2\% and improves motion diversity by 5.3\% over EMAGE, with user studies revealing a 71.3\% preference for its naturalness and semantic relevance. Code will be released upon acceptance.
Med-MoE: Mixture of Domain-Specific Experts for Lightweight Medical Vision-Language Models
Jiang, Songtao, Zheng, Tuo, Zhang, Yan, Jin, Yeying, Yuan, Li, Liu, Zuozhu
Recent advancements in general-purpose or domain-specific multimodal large language models (LLMs) have witnessed remarkable progress for medical decision-making. However, they are designated for specific classification or generative tasks, and require model training or finetuning on large-scale datasets with sizeable parameters and tremendous computing, hindering their clinical utility across diverse resource-constrained scenarios in practice. In this paper, we propose a novel and lightweight framework Med-MoE (Mixture-of-Experts) that tackles both discriminative and generative multimodal medical tasks. The learning of Med-MoE consists of three steps: multimodal medical alignment, instruction tuning and routing, and domain-specific MoE tuning. After aligning multimodal medical images with LLM tokens, we then enable the model for different multimodal medical tasks with instruction tuning, together with a trainable router tailored for expert selection across input modalities. Finally, the model is tuned by integrating the router with multiple domain-specific experts, which are selectively activated and further empowered by meta expert. Comprehensive experiments on both open- and close-end medical question answering (Med-VQA) and image classification tasks across datasets such as VQA-RAD, SLAKE and Path-VQA demonstrate that our model can achieve performance superior to or on par with state-of-the-art baselines, while only requiring approximately 30\%-50\% of activated model parameters. Extensive analysis and ablations corroborate the effectiveness and practical utility of our method.
Joint Visual and Text Prompting for Improved Object-Centric Perception with Multimodal Large Language Models
Jiang, Songtao, Zhang, Yan, Zhou, Chenyi, Jin, Yeying, Feng, Yang, Wu, Jian, Liu, Zuozhu
Multimodal Large Language Models (MLLMs) such as GPT-4V and Gemini Pro face challenges in achieving human-level perception in Visual Question Answering (VQA), particularly in object-oriented perception tasks which demand fine-grained understanding of object identities, locations or attributes, as indicated by empirical findings. This is mainly due to their limited capability to effectively integrate complex visual cues with textual information and potential object hallucinations. In this paper, we present a novel approach, Joint Visual and Text Prompting (VTPrompt), that employs fine-grained visual information to enhance the capability of MLLMs in VQA, especially for object-oriented perception. VTPrompt merges visual and text prompts to extract key concepts from textual questions and employs a detection model to highlight relevant objects as visual prompts in images. The processed images alongside text prompts are subsequently fed into MLLMs to produce more accurate answers. Our experiments with GPT-4V and Gemini Pro, on three benchmarks, i.e., MME , MMB and POPE, demonstrate significant improvements. Particularly, our method led to a score improvement of up to 183.5 for GPT-4V on MME and enhanced MMB performance by 8.17\% for GPT-4V and 15.69\% for Gemini Pro.