Not enough data to create a plot.
Try a different view from the menu above.
Jin, Xiaolong
Retrieval-Augmented Code Generation for Universal Information Extraction
Guo, Yucan, Li, Zixuan, Jin, Xiaolong, Liu, Yantao, Zeng, Yutao, Liu, Wenxuan, Li, Xiang, Yang, Pan, Bai, Long, Guo, Jiafeng, Cheng, Xueqi
Information Extraction (IE) aims to extract structural knowledge (e.g., entities, relations, events) from natural language texts, which brings challenges to existing methods due to task-specific schemas and complex text expressions. Code, as a typical kind of formalized language, is capable of describing structural knowledge under various schemas in a universal way. On the other hand, Large Language Models (LLMs) trained on both codes and texts have demonstrated powerful capabilities of transforming texts into codes, which provides a feasible solution to IE tasks. Therefore, in this paper, we propose a universal retrieval-augmented code generation framework based on LLMs, called Code4UIE, for IE tasks. Specifically, Code4UIE adopts Python classes to define task-specific schemas of various structural knowledge in a universal way. By so doing, extracting knowledge under these schemas can be transformed into generating codes that instantiate the predefined Python classes with the information in texts. To generate these codes more precisely, Code4UIE adopts the in-context learning mechanism to instruct LLMs with examples. In order to obtain appropriate examples for different tasks, Code4UIE explores several example retrieval strategies, which can retrieve examples semantically similar to the given texts. Extensive experiments on five representative IE tasks across nine datasets demonstrate the effectiveness of the Code4UIE framework.
An In-Context Schema Understanding Method for Knowledge Base Question Answering
Liu, Yantao, Li, Zixuan, Jin, Xiaolong, Bai, Long, Guan, Saiping, Guo, Jiafeng, Cheng, Xueqi
The Knowledge Base Question Answering (KBQA) task aims to answer natural language questions based on a given knowledge base. As a kind of common method for this task, semantic parsing-based ones first convert natural language questions to logical forms (e.g., SPARQL queries) and then execute them on knowledge bases to get answers. Recently, Large Language Models (LLMs) have shown strong abilities in language understanding and may be adopted as semantic parsers in such kinds of methods. However, in doing so, a great challenge for LLMs is to understand the schema of knowledge bases. Therefore, in this paper, we propose an In-Context Schema Understanding (ICSU) method for facilitating LLMs to be used as a semantic parser in KBQA. Specifically, ICSU adopts the In-context Learning mechanism to instruct LLMs to generate SPARQL queries with examples. In order to retrieve appropriate examples from annotated question-query pairs, which contain comprehensive schema information related to questions, ICSU explores four different retrieval strategies. Experimental results on the largest KBQA benchmark, KQA Pro, show that ICSU with all these strategies outperforms that with a random retrieval strategy significantly (from 12\% to 78.76\% in accuracy).
Few-shot Link Prediction on N-ary Facts
Wei, Jiyao, Guan, Saiping, Jin, Xiaolong, Guo, Jiafeng, Cheng, Xueqi
N-ary facts composed of a primary triple (head entity, relation, tail entity) and an arbitrary number of auxiliary attribute-value pairs, are prevalent in real-world knowledge graphs (KGs). Link prediction on n-ary facts is to predict a missing element in an n-ary fact. This helps populate and enrich KGs and further promotes numerous downstream applications. Previous studies usually require a substantial amount of high-quality data to understand the elements in n-ary facts. However, these studies overlook few-shot relations, which have limited labeled instances, yet are common in real-world scenarios. Thus, this paper introduces a new task, few-shot link prediction on n-ary facts. It aims to predict a missing entity in an n-ary fact with limited labeled instances. We further propose a model for Few-shot Link prEdict on N-ary facts, thus called FLEN, which consists of three modules: the relation learning, support-specific adjusting, and query inference modules. FLEN captures relation meta information from limited instances to predict a missing entity in a query instance. To validate the effectiveness of FLEN, we construct three datasets based on existing benchmark data. Our experimental results show that FLEN significantly outperforms existing related models in both few-shot link prediction on n-ary facts and binary facts.
ProtoEM: A Prototype-Enhanced Matching Framework for Event Relation Extraction
Hu, Zhilei, Li, Zixuan, Xu, Daozhu, Bai, Long, Jin, Cheng, Jin, Xiaolong, Guo, Jiafeng, Cheng, Xueqi
Event Relation Extraction (ERE) aims to extract multiple kinds of relations among events in texts. However, existing methods singly categorize event relations as different classes, which are inadequately capturing the intrinsic semantics of these relations. To comprehensively understand their intrinsic semantics, in this paper, we obtain prototype representations for each type of event relation and propose a Prototype-Enhanced Matching (ProtoEM) framework for the joint extraction of multiple kinds of event relations. Specifically, ProtoEM extracts event relations in a two-step manner, i.e., prototype representing and prototype matching. In the first step, to capture the connotations of different event relations, ProtoEM utilizes examples to represent the prototypes corresponding to these relations. Subsequently, to capture the interdependence among event relations, it constructs a dependency graph for the prototypes corresponding to these relations and utilized a Graph Neural Network (GNN)-based module for modeling. In the second step, it obtains the representations of new event pairs and calculates their similarity with those prototypes obtained in the first step to evaluate which types of event relations they belong to. Experimental results on the MAVEN-ERE dataset demonstrate that the proposed ProtoEM framework can effectively represent the prototypes of event relations and further obtain a significant improvement over baseline models.
Semantic Structure Enhanced Event Causality Identification
Hu, Zhilei, Li, Zixuan, Jin, Xiaolong, Bai, Long, Guan, Saiping, Guo, Jiafeng, Cheng, Xueqi
Event Causality Identification (ECI) aims to identify causal relations between events in unstructured texts. This is a very challenging task, because causal relations are usually expressed by implicit associations between events. Existing methods usually capture such associations by directly modeling the texts with pre-trained language models, which underestimate two kinds of semantic structures vital to the ECI task, namely, event-centric structure and event-associated structure. The former includes important semantic elements related to the events to describe them more precisely, while the latter contains semantic paths between two events to provide possible supports for ECI. In this paper, we study the implicit associations between events by modeling the above explicit semantic structures, and propose a Semantic Structure Integration model (SemSIn). It utilizes a GNN-based event aggregator to integrate the event-centric structure information, and employs an LSTM-based path aggregator to capture the event-associated structure information between two events. Experimental results on three widely used datasets show that SemSIn achieves significant improvements over baseline methods.
Rich Event Modeling for Script Event Prediction
Bai, Long, Guan, Saiping, Li, Zixuan, Guo, Jiafeng, Jin, Xiaolong, Cheng, Xueqi
Script is a kind of structured knowledge extracted from texts, which contains a sequence of events. Based on such knowledge, script event prediction aims to predict the subsequent event. To do so, two aspects should be considered for events, namely, event description (i.e., what the events should contain) and event encoding (i.e., how they should be encoded). Most existing methods describe an event by a verb together with only a few core arguments (i.e., subject, object, and indirect object), which are not precise. In addition, existing event encoders are limited to a fixed number of arguments, which are not flexible to deal with extra information. Thus, in this paper, we propose the Rich Event Prediction (REP) framework for script event prediction. Fundamentally, it is based on the proposed rich event description, which enriches the existing ones with three kinds of important information, namely, the senses of verbs, extra semantic roles, and types of participants. REP contains an event extractor to extract such information from texts. Based on the extracted rich information, a predictor then selects the most probable subsequent event. The core component of the predictor is a transformer-based event encoder to flexibly deal with an arbitrary number of arguments. Experimental results on the widely used Gigaword Corpus show the effectiveness of the proposed framework.
What is Event Knowledge Graph: A Survey
Guan, Saiping, Cheng, Xueqi, Bai, Long, Zhang, Fujun, Li, Zixuan, Zeng, Yutao, Jin, Xiaolong, Guo, Jiafeng
Besides entity-centric knowledge, usually organized as Knowledge Graph (KG), events are also an essential kind of knowledge in the world, which trigger the spring up of event-centric knowledge representation form like Event KG (EKG). It plays an increasingly important role in many machine learning and artificial intelligence applications, such as intelligent search, question-answering, recommendation, and text generation. This paper provides a comprehensive survey of EKG from history, ontology, instance, and application views. Specifically, to characterize EKG thoroughly, we focus on its history, definitions, schema induction, acquisition, related representative graphs/systems, and applications. The development processes and trends are studied therein. We further summarize perspective directions to facilitate future research on EKG.
Integrating Deep Event-Level and Script-Level Information for Script Event Prediction
Bai, Long, Guan, Saiping, Guo, Jiafeng, Li, Zixuan, Jin, Xiaolong, Cheng, Xueqi
Scripts are structured sequences of events together with the participants, which are extracted from the texts.Script event prediction aims to predict the subsequent event given the historical events in the script. Two kinds of information facilitate this task, namely, the event-level information and the script-level information. At the event level, existing studies view an event as a verb with its participants, while neglecting other useful properties, such as the state of the participants. At the script level, most existing studies only consider a single event sequence corresponding to one common protagonist. In this paper, we propose a Transformer-based model, called MCPredictor, which integrates deep event-level and script-level information for script event prediction. At the event level, MCPredictor utilizes the rich information in the text to obtain more comprehensive event semantic representations. At the script-level, it considers multiple event sequences corresponding to different participants of the subsequent event. The experimental results on the widely-used New York Times corpus demonstrate the effectiveness and superiority of the proposed model.
Search from History and Reason for Future: Two-stage Reasoning on Temporal Knowledge Graphs
Li, Zixuan, Jin, Xiaolong, Guan, Saiping, Li, Wei, Guo, Jiafeng, Wang, Yuanzhuo, Cheng, Xueqi
Temporal Knowledge Graphs (TKGs) have been developed and used in many different areas. Reasoning on TKGs that predicts potential facts (events) in the future brings great challenges to existing models. When facing a prediction task, human beings usually search useful historical information (i.e., clues) in their memories and then reason for future meticulously. Inspired by this mechanism, we propose CluSTeR to predict future facts in a two-stage manner, Clue Searching and Temporal Reasoning, accordingly. Specifically, at the clue searching stage, CluSTeR learns a beam search policy via reinforcement learning (RL) to induce multiple clues from historical facts. At the temporal reasoning stage, it adopts a graph convolution network based sequence method to deduce answers from clues. Experiments on four datasets demonstrate the substantial advantages of CluSTeR compared with the state-of-the-art methods. Moreover, the clues found by CluSTeR further provide interpretability for the results.
Link Prediction on N-ary Relational Data Based on Relatedness Evaluation
Guan, Saiping, Jin, Xiaolong, Guo, Jiafeng, Wang, Yuanzhuo, Cheng, Xueqi
With the overwhelming popularity of Knowledge Graphs (KGs), researchers have poured attention to link prediction to fill in missing facts for a long time. However, they mainly focus on link prediction on binary relational data, where facts are usually represented as triples in the form of (head entity, relation, tail entity). In practice, n-ary relational facts are also ubiquitous. When encountering such facts, existing studies usually decompose them into triples by introducing a multitude of auxiliary virtual entities and additional triples. These conversions result in the complexity of carrying out link prediction on n-ary relational data. It has even proven that they may cause loss of structure information. To overcome these problems, in this paper, we represent each n-ary relational fact as a set of its role and role-value pairs. We then propose a method called NaLP to conduct link prediction on n-ary relational data, which explicitly models the relatedness of all the role and role-value pairs in an n-ary relational fact. We further extend NaLP by introducing type constraints of roles and role-values without any external type-specific supervision, and proposing a more reasonable negative sampling mechanism. Experimental results validate the effectiveness and merits of the proposed methods.