Goto

Collaborating Authors

 Jin, Weina


AI for Just Work: Constructing Diverse Imaginations of AI beyond "Replacing Humans"

arXiv.org Artificial Intelligence

The AI community usually focuses on "how" to develop AI techniques, but lacks thorough open discussions on "why" we develop AI. Lacking critical reflections on the general visions and purposes of AI may make the community vulnerable to manipulation. In this position paper, we explore the "why" question of AI. We denote answers to the "why" question the imaginations of AI, which depict our general visions, frames, and mindsets for the prospects of AI. We identify that the prevailing vision in the AI community is largely a monoculture that emphasizes objectives such as replacing humans and improving productivity. Our critical examination of this mainstream imagination highlights its underpinning and potentially unjust assumptions. We then call to diversify our collective imaginations of AI, embedding ethical assumptions from the outset in the imaginations of AI. To facilitate the community's pursuit of diverse imaginations, we demonstrate one process for constructing a new imagination of "AI for just work," and showcase its application in the medical image synthesis task to make it more ethical. We hope this work will help the AI community to open dialogues with civil society on the visions and purposes of AI, and inspire more technical works and advocacy in pursuit of diverse and ethical imaginations to restore the value of AI for the public good.


Evaluating Explainable AI on a Multi-Modal Medical Imaging Task: Can Existing Algorithms Fulfill Clinical Requirements?

arXiv.org Artificial Intelligence

Being able to explain the prediction to clinical end-users is a necessity to leverage the power of artificial intelligence (AI) models for clinical decision support. For medical images, a feature attribution map, or heatmap, is the most common form of explanation that highlights important features for AI models' prediction. However, it is unknown how well heatmaps perform on explaining decisions on multi-modal medical images, where each image modality or channel visualizes distinct clinical information of the same underlying biomedical phenomenon. Understanding such modality-dependent features is essential for clinical users' interpretation of AI decisions. To tackle this clinically important but technically ignored problem, we propose the modality-specific feature importance (MSFI) metric. It encodes clinical image and explanation interpretation patterns of modality prioritization and modality-specific feature localization. We conduct a clinical requirement-grounded, systematic evaluation using computational methods and a clinician user study. Results show that the examined 16 heatmap algorithms failed to fulfill clinical requirements to correctly indicate AI model decision process or decision quality. The evaluation and MSFI metric can guide the design and selection of XAI algorithms to meet clinical requirements on multi-modal explanation.


The XAI Alignment Problem: Rethinking How Should We Evaluate Human-Centered AI Explainability Techniques

arXiv.org Artificial Intelligence

Setting proper evaluation objectives for explainable artificial intelligence (XAI) is vital for making XAI algorithms follow human communication norms, support human reasoning processes, and fulfill human needs for AI explanations. In this position paper, we examine the most pervasive human-grounded concept in XAI evaluation, explanation plausibility. Plausibility measures how reasonable the machine explanation is compared to the human explanation. Plausibility has been conventionally formulated as an important evaluation objective for AI explainability tasks. We argue against this idea, and show how optimizing and evaluating XAI for plausibility is sometimes harmful, and always ineffective in achieving model understandability, transparency, and trustworthiness. Specifically, evaluating XAI algorithms for plausibility regularizes the machine explanation to express exactly the same content as human explanation, which deviates from the fundamental motivation for humans to explain: expressing similar or alternative reasoning trajectories while conforming to understandable forms or language. Optimizing XAI for plausibility regardless of the model decision correctness also jeopardizes model trustworthiness, because doing so breaks an important assumption in human-human explanation that plausible explanations typically imply correct decisions, and vice versa; and violating this assumption eventually leads to either undertrust or overtrust of AI models. Instead of being the end goal in XAI evaluation, plausibility can serve as an intermediate computational proxy for the human process of interpreting explanations to optimize the utility of XAI.


Invisible Users: Uncovering End-Users' Requirements for Explainable AI via Explanation Forms and Goals

arXiv.org Artificial Intelligence

Non-technical end-users are silent and invisible users of the state-of-the-art explainable artificial intelligence (XAI) technologies. Their demands and requirements for AI explainability are not incorporated into the design and evaluation of XAI techniques, which are developed to explain the rationales of AI decisions to end-users and assist their critical decisions. This makes XAI techniques ineffective or even harmful in high-stakes applications, such as healthcare, criminal justice, finance, and autonomous driving systems. To systematically understand end-users' requirements to support the technical development of XAI, we conducted the EUCA user study with 32 layperson participants in four AI-assisted critical tasks. The study identified comprehensive user requirements for feature-, example-, and rule-based XAI techniques (manifested by the end-user-friendly explanation forms) and XAI evaluation objectives (manifested by the explanation goals), which were shown to be helpful to directly inspire the proposal of new XAI algorithms and evaluation metrics. The EUCA study findings, the identified explanation forms and goals for technical specification, and the EUCA study dataset support the design and evaluation of end-user-centered XAI techniques for accessible, safe, and accountable AI.


Transcending XAI Algorithm Boundaries through End-User-Inspired Design

arXiv.org Artificial Intelligence

The boundaries of existing explainable artificial intelligence (XAI) algorithms are confined to problems grounded in technical users' demand for explainability. This research paradigm disproportionately ignores the larger group of non-technical end users, who have a much higher demand for AI explanations in diverse explanation goals, such as making safer and better decisions and improving users' predicted outcomes. Lacking explainability-focused functional support for end users may hinder the safe and accountable use of AI in high-stakes domains, such as healthcare, criminal justice, finance, and autonomous driving systems. Built upon prior human factor analysis on end users' requirements for XAI, we identify and model four novel XAI technical problems covering the full spectrum from design to the evaluation of XAI algorithms, including edge-case-based reasoning, customizable counterfactual explanation, collapsible decision tree, and the verifiability metric to evaluate XAI utility. Based on these newly-identified research problems, we also discuss open problems in the technical development of user-centered XAI to inspire future research. Our work bridges human-centered XAI with the technical XAI community, and calls for a new research paradigm on the technical development of user-centered XAI for the responsible use of AI in critical tasks.


Guidelines and Evaluation of Clinical Explainable AI in Medical Image Analysis

arXiv.org Artificial Intelligence

Explainable artificial intelligence (XAI) is essential for enabling clinical users to get informed decision support from AI and comply with evidence-based medical practice. Applying XAI in clinical settings requires proper evaluation criteria to ensure the explanation technique is both technically sound and clinically useful, but specific support is lacking to achieve this goal. To bridge the research gap, we propose the Clinical XAI Guidelines that consist of five criteria a clinical XAI needs to be optimized for. The guidelines recommend choosing an explanation form based on Guideline 1 (G1) Understandability and G2 Clinical relevance. For the chosen explanation form, its specific XAI technique should be optimized for G3 Truthfulness, G4 Informative plausibility, and G5 Computational efficiency. Following the guidelines, we conducted a systematic evaluation on a novel problem of multi-modal medical image explanation with two clinical tasks, and proposed new evaluation metrics accordingly. Sixteen commonly-used heatmap XAI techniques were evaluated and found to be insufficient for clinical use due to their failure in G3 and G4. Our evaluation demonstrated the use of Clinical XAI Guidelines to support the design and evaluation of clinically viable XAI.