Goto

Collaborating Authors

 Jin, Shutong


One-Shot Federated Learning with Classifier-Free Diffusion Models

arXiv.org Artificial Intelligence

Federated learning (FL) enables collaborative learning without data centralization but introduces significant communication costs due to multiple communication rounds between clients and the server. One-shot federated learning (OSFL) addresses this by forming a global model with a single communication round, often relying on the server's model distillation or auxiliary dataset generation - often through pre-trained diffusion models (DMs). Existing DM-assisted OSFL methods, however, typically employ classifier-guided DMs, which require training auxiliary classifier models at each client, introducing additional computation overhead. This work introduces OSCAR (One-Shot Federated Learning with Classifier-Free Diffusion Models), a novel OSFL approach that eliminates the need for auxiliary models. OSCAR uses foundation models to devise category-specific data representations at each client, seamlessly integrated into a classifier-free diffusion model pipeline for server-side data generation. OSCAR is a simple yet cost-effective OSFL approach that outperforms the state-of-the-art on four benchmarking datasets while reducing the communication load by at least 99%.


PACA: Perspective-Aware Cross-Attention Representation for Zero-Shot Scene Rearrangement

arXiv.org Artificial Intelligence

Scene rearrangement, like table tidying, is a challenging task in robotic manipulation due to the complexity of predicting diverse object arrangements. Web-scale trained generative models such as Stable Diffusion can aid by generating natural scenes as goals. To facilitate robot execution, object-level representations must be extracted to match the real scenes with the generated goals and to calculate object pose transformations. Current methods typically use a multi-step design that involves separate models for generation, segmentation, and feature encoding, which can lead to a low success rate due to error accumulation. Furthermore, they lack control over the viewing perspectives of the generated goals, restricting the tasks to 3-DoF settings. In this paper, we propose PACA, a zero-shot pipeline for scene rearrangement that leverages perspective-aware cross-attention representation derived from Stable Diffusion. Specifically, we develop a representation that integrates generation, segmentation, and feature encoding into a single step to produce object-level representations. Additionally, we introduce perspective control, thus enabling the matching of 6-DoF camera views and extending past approaches that were limited to 3-DoF top-down views. The efficacy of our method is demonstrated through its zero-shot performance in real robot experiments across various scenes, achieving an average matching accuracy and execution success rate of 87% and 67%, respectively.


Feature Extractor or Decision Maker: Rethinking the Role of Visual Encoders in Visuomotor Policies

arXiv.org Artificial Intelligence

An end-to-end (E2E) visuomotor policy is typically treated as a unified whole, but recent approaches using out-of-domain (OOD) data to pretrain the visual encoder have cleanly separated the visual encoder from the network, with the remainder referred to as the policy. We propose Visual Alignment Testing, an experimental framework designed to evaluate the validity of this functional separation. Our results indicate that in E2E-trained models, visual encoders actively contribute to decision-making resulting from motor data supervision, contradicting the assumed functional separation. In contrast, OOD-pretrained models, where encoders lack this capability, experience an average performance drop of 42% in our benchmark results, compared to the state-of-the-art performance achieved by E2E policies. We believe this initial exploration of visual encoders' role can provide a first step towards guiding future pretraining methods to address their decision-making ability, such as developing task-conditioned or context-aware encoders.


Video Transformers under Occlusion: How Physics and Background Attributes Impact Large Models for Robotic Manipulation

arXiv.org Artificial Intelligence

As transformer architectures and dataset sizes continue to scale, the need to understand the specific dataset factors affecting model performance becomes increasingly urgent. This paper investigates how object physics attributes (color, friction coefficient, shape) and background characteristics (static, dynamic, background complexity) influence the performance of Video Transformers in trajectory prediction tasks under occlusion. Beyond mere occlusion challenges, this study aims to investigate three questions: How do object physics attributes and background characteristics influence the model performance? What kinds of attributes are most influential to the model generalization? Is there a data saturation point for large transformer model performance within a single task? To facilitate this research, we present OccluManip, a real-world video-based robot pushing dataset comprising 460,000 consistent recordings of objects with different physics and varying backgrounds. 1.4 TB and in total 1278 hours of high-quality videos of flexible temporal length along with target object trajectories are collected, accommodating tasks with different temporal requirements. Additionally, we propose Video Occlusion Transformer (VOT), a generic video-transformer-based network achieving an average 96% accuracy across all 18 sub-datasets provided in OccluManip. OccluManip and VOT will be released at: https://github.com/ShutongJIN/OccluManip.git