Goto

Collaborating Authors

 Jin, Qian


SEM-CLIP: Precise Few-Shot Learning for Nanoscale Defect Detection in Scanning Electron Microscope Image

arXiv.org Artificial Intelligence

In the field of integrated circuit manufacturing, the detection and classification of nanoscale wafer defects are critical for subsequent root cause analysis and yield enhancement. The complex background patterns observed in scanning electron microscope (SEM) images and the diverse textures of the defects pose significant challenges. Traditional methods usually suffer from insufficient data, labels, and poor transferability. In this paper, we propose a novel few-shot learning approach, SEM-CLIP, for accurate defect classification and segmentation. SEM-CLIP customizes the Contrastive Language-Image Pretraining (CLIP) model to better focus on defect areas and minimize background distractions, thereby enhancing segmentation accuracy. We employ text prompts enriched with domain knowledge as prior information to assist in precise analysis. Additionally, our approach incorporates feature engineering with textual guidance to categorize defects more effectively. SEM-CLIP requires little annotated data, substantially reducing labor demands in the semiconductor industry. Extensive experimental validation demonstrates that our model achieves impressive classification and segmentation results under few-shot learning scenarios.


FabGPT: An Efficient Large Multimodal Model for Complex Wafer Defect Knowledge Queries

arXiv.org Artificial Intelligence

Intelligence is key to advancing integrated circuit (IC) fabrication. Recent breakthroughs in Large Multimodal Models (LMMs) have unlocked unparalleled abilities in understanding images and text, fostering intelligent fabrication. Leveraging the power of LMMs, we introduce FabGPT, a customized IC fabrication large multimodal model for wafer defect knowledge query. FabGPT manifests expertise in conducting defect detection in Scanning Electron Microscope (SEM) images, performing root cause analysis, and providing expert question-answering (Q&A) on fabrication processes. FabGPT matches enhanced multimodal features to automatically detect minute defects under complex wafer backgrounds and reduce the subjectivity of manual threshold settings. Besides, the proposed modulation module and interactive corpus training strategy embed wafer defect knowledge into the pre-trained model, effectively balancing Q&A queries related to defect knowledge and original knowledge and mitigating the modality bias issues. Experiments on in-house fab data (SEM-WaD) show that our FabGPT achieves significant performance improvement in wafer defect detection and knowledge querying.