Goto

Collaborating Authors

 Jin, Mingyu


Massive Values in Self-Attention Modules are the Key to Contextual Knowledge Understanding

arXiv.org Artificial Intelligence

Large language models (LLMs) have achieved remarkable success in contextual knowledge understanding. In this paper, we show that these concentrated massive values consistently emerge in specific regions of attention queries (Q) and keys (K) while not having such patterns in values (V) in various modern transformer-based LLMs (Q, K, and V mean the representations output by the query, key, and value layers respectively). Through extensive experiments, we further demonstrate that these massive values play a critical role in interpreting contextual knowledge (i.e., knowledge obtained from the current context window) rather than in retrieving parametric knowledge stored within the model's parameters. Our further investigation of quantization strategies reveals that ignoring these massive values leads to a pronounced drop in performance on tasks requiring rich contextual understanding, aligning with our analysis. Finally, we trace the emergence of concentrated massive values and find that such concentration is caused by Rotary Positional Encoding (RoPE), which has appeared since the first layers. These findings shed new light on how Q and K operate in LLMs and offer practical insights for model design and optimization.


Disentangling Memory and Reasoning Ability in Large Language Models

arXiv.org Artificial Intelligence

Recent advancements in Large Language Models (LLMs) have showcased their impressive inference capabilities in handling complex natural language tasks that require both extensive knowledge and sophisticated reasoning abilities (OpenAI, 2024; Touvron et al., 2023; Wei et al., 2022a). LLMs have demonstrated the ability to memorize vast amounts of knowledge, and techniques like Chain-of-Thought (CoT) (Wei et al., 2022b), Tree of thoughts (ToT) (Yao et al., 2024) have been developed to further enhance their inference abilities by decomposing complex problems into several simpler, single-step processes. These methods enable LLMs to tackle multi-step inference tasks more effectively by organizing the thought process into discrete, focused actions (Feng et al., 2024; Jin et al., 2024b; Wei et al., 2022b). However, despite these advancements, existing inference frameworks often operate as an opaque process without explicit separation between knowledge retrieval and reasoning steps. This makes it unclear what specific knowledge the model utilizes and how it performs reasoning, leaving the decision-making process ambiguous. For complex, knowledge-intensive tasks, such as multi-hop inference, LLMs often struggle to effectively leverage their memory for inference (Yang et al., 2023; Jin et al., 2024b; Wang et al., 2024b; Cheng et al., 2024; Liu et al., 2024). Such tasks typically require the ability to recall relevant knowledge for each reasoning step (or "hop") and then perform inference over that recalled memory (Wang et al., 2024c). The lack of structure in the output and effective memory utilization can lead to issues such as hallucinations, where LLMs generate plausible but incorrect information (Xu et al., 2024; Li et al., 2024a), and "forgetting," where relevant information is lost across reasoning steps (Jin et al., 2024b; Chen & Shu, 2023), disrupting the logical flow.


Target-driven Attack for Large Language Models

arXiv.org Artificial Intelligence

Current large language models (LLM) provide a strong foundation for large-scale user-oriented natural language tasks. Many users can easily inject adversarial text or instructions through the user interface, thus causing LLM model security challenges like the language model not giving the correct answer. Although there is currently a large amount of research on black-box attacks, most of these black-box attacks use random and heuristic strategies. It is unclear how these strategies relate to the success rate of attacks and thus effectively improve model robustness. To solve this problem, we propose our target-driven black-box attack method to maximize the KL divergence between the conditional probabilities of the clean text and the attack text to redefine the attack's goal. We transform the distance maximization problem into two convex optimization problems based on the attack goal to solve the attack text and estimate the covariance. Furthermore, the projected gradient descent algorithm solves the vector corresponding to the attack text. Our target-driven black-box attack approach includes two attack strategies: token manipulation and misinformation attack. Experimental results on multiple Large Language Models and datasets demonstrate the effectiveness of our attack method.


Game-theoretic LLM: Agent Workflow for Negotiation Games

arXiv.org Artificial Intelligence

This paper investigates the rationality of large language models (LLMs) in strategic decision-making contexts, specifically within the framework of game theory. We evaluate several state-of-the-art LLMs across a spectrum of complete-information and incomplete-information games. Our findings reveal that LLMs frequently deviate from rational strategies, particularly as the complexity of the game increases with larger payoff matrices or deeper sequential trees. To address these limitations, we design multiple game-theoretic workflows that guide the reasoning and decision-making processes of LLMs. These workflows aim to enhance the models' ability to compute Nash Equilibria and make rational choices, even under conditions of uncertainty and incomplete information. Experimental results demonstrate that the adoption of these workflows significantly improves the rationality and robustness of LLMs in game-theoretic tasks. Specifically, with the workflow, LLMs exhibit marked improvements in identifying optimal strategies, achieving near-optimal allocations in negotiation scenarios, and reducing susceptibility to exploitation during negotiations. Furthermore, we explore the meta-strategic considerations of whether it is rational for agents to adopt such workflows, recognizing that the decision to use or forgo the workflow constitutes a game-theoretic issue in itself. Our research contributes to a deeper understanding of LLMs' decision-making capabilities in strategic contexts and provides insights into enhancing their rationality through structured workflows. The findings have implications for the development of more robust and strategically sound AI agents capable of navigating complex interactive environments. Code and data supporting this study are available at \url{https://github.com/Wenyueh/game_theory}.


AIPatient: Simulating Patients with EHRs and LLM Powered Agentic Workflow

arXiv.org Artificial Intelligence

Simulated patient systems play a crucial role in modern medical education and research, providing safe, integrative learning environments and enabling clinical decision-making simulations. Large Language Models (LLM) could advance simulated patient systems by replicating medical conditions and patient-doctor interactions with high fidelity and low cost. However, ensuring the effectiveness and trustworthiness of these systems remains a challenge, as they require a large, diverse, and precise patient knowledgebase, along with a robust and stable knowledge diffusion to users. Here, we developed AIPatient, an advanced simulated patient system with AIPatient Knowledge Graph (AIPatient KG) as the input and the Reasoning Retrieval-Augmented Generation (Reasoning RAG) agentic workflow as the generation backbone. AIPatient KG samples data from Electronic Health Records (EHRs) in the Medical Information Mart for Intensive Care (MIMIC)-III database, producing a clinically diverse and relevant cohort of 1,495 patients with high knowledgebase validity (F1 0.89). Reasoning RAG leverages six LLM powered agents spanning tasks including retrieval, KG query generation, abstraction, checker, rewrite, and summarization. This agentic framework reaches an overall accuracy of 94.15% in EHR-based medical Question Answering (QA), outperforming benchmarks that use either no agent or only partial agent integration. Our system also presents high readability (median Flesch Reading Ease 77.23; median Flesch Kincaid Grade 5.6), robustness (ANOVA F-value 0.6126, p>0.1), and stability (ANOVA F-value 0.782, p>0.1). The promising performance of the AIPatient system highlights its potential to support a wide range of applications, including medical education, model evaluation, and system integration.


Exploring Multilingual Probing in Large Language Models: A Cross-Language Analysis

arXiv.org Artificial Intelligence

Probing techniques for large language models (LLMs) have primarily focused on English, overlooking the vast majority of the world's languages. In this paper, we extend these probing methods to a multilingual context, investigating the behaviors of LLMs across diverse languages. We conduct experiments on several open-source LLM models, analyzing probing accuracy, trends across layers, and similarities between probing vectors for multiple languages. Our key findings reveal: (1) a consistent performance gap between high-resource and low-resource languages, with high-resource languages achieving significantly higher probing accuracy; (2) divergent layer-wise accuracy trends, where high-resource languages show substantial improvement in deeper layers similar to English; and (3) higher representational similarities among high-resource languages, with low-resource languages demonstrating lower similarities both among themselves and with high-resource languages. These results highlight significant disparities in LLMs' multilingual capabilities and emphasize the need for improved modeling of low-resource languages.


Data-centric NLP Backdoor Defense from the Lens of Memorization

arXiv.org Artificial Intelligence

Backdoor attack is a severe threat to the trustworthiness of DNN-based language models. In this paper, we first extend the definition of memorization of language models from sample-wise to more fine-grained sentence element-wise (e.g., word, phrase, structure, and style), and then point out that language model backdoors are a type of element-wise memorization. Through further analysis, we find that the strength of such memorization is positively correlated to the frequency of duplicated elements in the training dataset. In conclusion, duplicated sentence elements are necessary for successful backdoor attacks. Based on this, we propose a data-centric defense. We first detect trigger candidates in training data by finding memorizable elements, i.e., duplicated elements, and then confirm real triggers by testing if the candidates can activate backdoor behaviors (i.e., malicious elements). Results show that our method outperforms state-of-the-art defenses in defending against different types of NLP backdoors.


Uncertainty is Fragile: Manipulating Uncertainty in Large Language Models

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are employed across various high-stakes domains, where the reliability of their outputs is crucial. One commonly used method to assess the reliability of LLMs' responses is uncertainty estimation, which gauges the likelihood of their answers being correct. While many studies focus on improving the accuracy of uncertainty estimations for LLMs, our research investigates the fragility of uncertainty estimation and explores potential attacks. We demonstrate that an attacker can embed a backdoor in LLMs, which, when activated by a specific trigger in the input, manipulates the model's uncertainty without affecting the final output. Specifically, the proposed backdoor attack method can alter an LLM's output probability distribution, causing the probability distribution to converge towards an attacker-predefined distribution while ensuring that the top-1 prediction remains unchanged. Our experimental results demonstrate that this attack effectively undermines the model's self-evaluation reliability in multiple-choice questions. For instance, we achieved a 100 attack success rate (ASR) across three different triggering strategies in four models. Further, we investigate whether this manipulation generalizes across different prompts and domains. This work highlights a significant threat to the reliability of LLMs and underscores the need for future defenses against such attacks. The code is available at https://github.com/qcznlp/uncertainty_attack.


ProLLM: Protein Chain-of-Thoughts Enhanced LLM for Protein-Protein Interaction Prediction

arXiv.org Artificial Intelligence

The prediction of protein-protein interactions (PPIs) is crucial for understanding biological functions and diseases. Previous machine learning approaches to PPI prediction mainly focus on direct physical interactions, ignoring the broader context of nonphysical connections through intermediate proteins, thus limiting their effectiveness. The emergence of Large Language Models (LLMs) provides a new opportunity for addressing this complex biological challenge. By transforming structured data into natural language prompts, we can map the relationships between proteins into texts. This approach allows LLMs to identify indirect connections between proteins, tracing the path from upstream to downstream. Therefore, we propose a novel framework ProLLM that employs an LLM tailored for PPI for the first time. Specifically, we propose Protein Chain of Thought (ProCoT), which replicates the biological mechanism of signaling pathways as natural language prompts. ProCoT considers a signaling pathway as a protein reasoning process, which starts from upstream proteins and passes through several intermediate proteins to transmit biological signals to downstream proteins. Thus, we can use ProCoT to predict the interaction between upstream proteins and downstream proteins. The training of ProLLM employs the ProCoT format, which enhances the model's understanding of complex biological problems. In addition to ProCoT, this paper also contributes to the exploration of embedding replacement of protein sites in natural language prompts, and instruction fine-tuning in protein knowledge datasets. We demonstrate the efficacy of ProLLM through rigorous validation against benchmark datasets, showing significant improvement over existing methods in terms of prediction accuracy and generalizability. The code is available at: https://github.com/MingyuJ666/ProLLM.


MoralBench: Moral Evaluation of LLMs

arXiv.org Artificial Intelligence

In the rapidly evolving field of artificial intelligence, large language models (LLMs) have emerged as powerful tools for a myriad of applications, from natural language processing to decision-making support systems. However, as these models become increasingly integrated into societal frameworks, the imperative to ensure they operate within ethical and moral boundaries has never been more critical. This paper introduces a novel benchmark designed to measure and compare the moral reasoning capabilities of LLMs. We present the first comprehensive dataset specifically curated to probe the moral dimensions of LLM outputs, addressing a wide range of ethical dilemmas and scenarios reflective of real-world complexities. The main contribution of this work lies in the development of benchmark datasets and metrics for assessing the moral identity of LLMs, which accounts for nuance, contextual sensitivity, and alignment with human ethical standards. Our methodology involves a multi-faceted approach, combining quantitative analysis with qualitative insights from ethics scholars to ensure a thorough evaluation of model performance. By applying our benchmark across several leading LLMs, we uncover significant variations in moral reasoning capabilities of different models. These findings highlight the importance of considering moral reasoning in the development and evaluation of LLMs, as well as the need for ongoing research to address the biases and limitations uncovered in our study.