Goto

Collaborating Authors

 Jin, Libiao


S$^2$AG-Vid: Enhancing Multi-Motion Alignment in Video Diffusion Models via Spatial and Syntactic Attention-Based Guidance

arXiv.org Artificial Intelligence

Recent advancements in text-to-video (T2V) generation using diffusion models have garnered significant attention. However, existing T2V models primarily focus on simple scenes featuring a single object performing a single motion. Challenges arise in scenarios involving multiple objects with distinct motions, often leading to incorrect video-text alignment between subjects and their corresponding motions. To address this challenge, we propose \textbf{S$^2$AG-Vid}, a training-free inference-stage optimization method that improves the alignment of multiple objects with their corresponding motions in T2V models. S$^2$AG-Vid initially applies a spatial position-based, cross-attention (CA) constraint in the early stages of the denoising process, facilitating multiple nouns distinctly attending to the correct subject regions. To enhance the motion-subject binding, we implement a syntax-guided contrastive constraint in the subsequent denoising phase, aimed at improving the correlations between the CA maps of verbs and their corresponding nouns.Both qualitative and quantitative evaluations demonstrate that the proposed framework significantly outperforms baseline approaches, producing higher-quality videos with improved subject-motion consistency.


Scalable Face Image Coding via StyleGAN Prior: Towards Compression for Human-Machine Collaborative Vision

arXiv.org Artificial Intelligence

The accelerated proliferation of visual content and the rapid development of machine vision technologies bring significant challenges in delivering visual data on a gigantic scale, which shall be effectively represented to satisfy both human and machine requirements. In this work, we investigate how hierarchical representations derived from the advanced generative prior facilitate constructing an efficient scalable coding paradigm for human-machine collaborative vision. Our key insight is that by exploiting the StyleGAN prior, we can learn three-layered representations encoding hierarchical semantics, which are elaborately designed into the basic, middle, and enhanced layers, supporting machine intelligence and human visual perception in a progressive fashion. With the aim of achieving efficient compression, we propose the layer-wise scalable entropy transformer to reduce the redundancy between layers. Based on the multi-task scalable rate-distortion objective, the proposed scheme is jointly optimized to achieve optimal machine analysis performance, human perception experience, and compression ratio. We validate the proposed paradigm's feasibility in face image compression. Extensive qualitative and quantitative experimental results demonstrate the superiority of the proposed paradigm over the latest compression standard Versatile Video Coding (VVC) in terms of both machine analysis as well as human perception at extremely low bitrates ($<0.01$ bpp), offering new insights for human-machine collaborative compression.