Goto

Collaborating Authors

 Jin, Chi


Sample-Efficient Reinforcement Learning of Undercomplete POMDPs

arXiv.org Artificial Intelligence

In many sequential decision making settings, the agent lacks complete information about the underlying state of the system, a phenomenon known as partial observability. Partial observability significantly complicates the tasks of reinforcement learning and planning, because the non-Markovian nature of the observations forces the agent to maintain memory and reason about beliefs of the system state, all while exploring to collect information about the environment. For example, a robot may not be able to perceive all objects in the environment due to occlusions, and it must reason about how these objects may move to avoid collisions [Cassandra et al., 1996]. Similar reasoning problems arise in imperfect information games [Brown and Sandholm, 2018], medical diagnosis [Hauskrecht and Fraser, 2000], and elsewhere [Rafferty et al., 2011]. Furthermore, from a theoretical perspective, well-known complexity-theoretic results show that learning and planning in partially observable environments is statistically and computationally intractable in general [Papadimitriou and Tsitsiklis, 1987, Mundhenk et al., 2000, Vlassis et al., 2012, Mossel and Roch, 2005]. The standard formulation for reinforcement learning with partial observability is the Partially Observable Markov Decision Process (POMDP), in which an agent operating on noisy observations makes decisions that influence the evolution of a latent state. The complexity barriers apply for this model, but they are of a worst case nature, and they do not preclude efficient algorithms for interesting subclasses of POMDPs. Thus we ask: Can we develop efficient algorithms for reinforcement learning in large classes of POMDPs?


Provably Efficient Reinforcement Learning with Linear Function Approximation

arXiv.org Machine Learning

Modern Reinforcement Learning (RL) is commonly applied to practical problems with an enormous number of states, where function approximation must be deployed to approximate either the value function or the policy. The introduction of function approximation raises a fundamental set of challenges involving computational and statistical efficiency, especially given the need to manage the exploration/exploitation tradeoff. As a result, a core RL question remains open: how can we design provably efficient RL algorithms that incorporate function approximation? This question persists even in a basic setting with linear dynamics and linear rewards, for which only linear function approximation is needed. This paper presents the first provable RL algorithm with both polynomial runtime and polynomial sample complexity in this linear setting, without requiring a "simulator" or additional assumptions. Concretely, we prove that an optimistic modification of Least-Squares Value Iteration (LSVI)---a classical algorithm frequently studied in the linear setting---achieves $\tilde{\mathcal{O}}(\sqrt{d^3H^3T})$ regret, where $d$ is the ambient dimension of feature space, $H$ is the length of each episode, and $T$ is the total number of steps. Importantly, such regret is independent of the number of states and actions.


On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems

arXiv.org Machine Learning

We consider nonconvex-concave minimax problems, $\min_{x} \max_{y\in\mathcal{Y}} f(x, y)$, where $f$ is nonconvex in $x$ but concave in $y$. The standard algorithm for solving this problem is the celebrated gradient descent ascent (GDA) algorithm, which has been widely used in machine learning, control theory and economics. However, despite the solid theory for the convex-concave setting, GDA can converge to limit cycles or even diverge in a general setting. In this paper, we present a nonasymptotic analysis of GDA for solving nonconvex-concave minimax problems, showing that GDA can find a stationary point of the function $\Phi(\cdot) :=\max_{y\in\mathcal{Y} }f(\cdot, y)$ efficiently. To the best our knowledge, this is the first theoretical guarantee for GDA in this setting, shedding light on its practical performance in many real applications.


Stochastic Gradient Descent Escapes Saddle Points Efficiently

arXiv.org Machine Learning

This paper considers the perturbed stochastic gradient descent algorithm and shows that it finds $\epsilon$-second order stationary points ($\left\|\nabla f(x)\right\|\leq \epsilon$ and $\nabla^2 f(x) \succeq -\sqrt{\epsilon} \mathbf{I}$) in $\tilde{O}(d/\epsilon^4)$ iterations, giving the first result that has linear dependence on dimension for this setting. For the special case, where stochastic gradients are Lipschitz, the dependence on dimension reduces to polylogarithmic. In addition to giving new results, this paper also presents a simplified proof strategy that gives a shorter and more elegant proof of previously known results (Jin et al. 2017) on perturbed gradient descent algorithm.


Minmax Optimization: Stable Limit Points of Gradient Descent Ascent are Locally Optimal

arXiv.org Machine Learning

Minmax optimization, especially in its general nonconvex-nonconcave formulation, has found extensive applications in modern machine learning frameworks such as generative adversarial networks (GAN), adversarial training and multi-agent reinforcement learning. Gradient-based algorithms, in particular gradient descent ascent (GDA), are widely used in practice to solve these problems. Despite the practical popularity of GDA, however, its theoretical behavior has been considered highly undesirable. Indeed, apart from possiblity of non-convergence, recent results (Daskalakis and Panageas, 2018; Mazumdar and Ratliff, 2018; Adolphs et al., 2018) show that even when GDA converges, its stable limit points can be points that are not local Nash equilibria, thus not game-theoretically meaningful. In this paper, we initiate a discussion on the proper optimality measures for minmax optimization, and introduce a new notion of local optimality---local minmax---as a more suitable alternative to the notion of local Nash equilibrium. We establish favorable properties of local minmax points, and show, most importantly, that as the ratio of the ascent step size to the descent step size goes to infinity, stable limit points of GDA are exactly local minmax points up to degenerate points, demonstrating that all stable limit points of GDA have a game-theoretic meaning for minmax problems.


Stochastic Cubic Regularization for Fast Nonconvex Optimization

Neural Information Processing Systems

This paper proposes a stochastic variant of a classic algorithm---the cubic-regularized Newton method [Nesterov and Polyak]. The proposed algorithm efficiently escapes saddle points and finds approximate local minima for general smooth, nonconvex functions in only $\mathcal{\tilde{O}}(\epsilon^{-3.5})$ stochastic gradient and stochastic Hessian-vector product evaluations. The latter can be computed as efficiently as stochastic gradients. This improves upon the $\mathcal{\tilde{O}}(\epsilon^{-4})$ rate of stochastic gradient descent. Our rate matches the best-known result for finding local minima without requiring any delicate acceleration or variance-reduction techniques.


On the Local Minima of the Empirical Risk

Neural Information Processing Systems

Population risk is always of primary interest in machine learning; however, learning algorithms only have access to the empirical risk. Even for applications with nonconvex non-smooth losses (such as modern deep networks), the population risk is generally significantly more well behaved from an optimization point of view than the empirical risk. In particular, sampling can create many spurious local minima. We consider a general framework which aims to optimize a smooth nonconvex function $F$ (population risk) given only access to an approximation $f$ (empirical risk) that is pointwise close to $F$ (i.e., $\norm{F-f}_{\infty} \le \nu$). Our objective is to find the $\epsilon$-approximate local minima of the underlying function $F$ while avoiding the shallow local minima---arising because of the tolerance $\nu$---which exist only in $f$. We propose a simple algorithm based on stochastic gradient descent (SGD) on a smoothed version of $f$ that is guaranteed to achieve our goal as long as $\nu \le O(\epsilon^{1.5}/d)$. We also provide an almost matching lower bound showing that our algorithm achieves optimal error tolerance $\nu$ among all algorithms making a polynomial number of queries of $f$. As a concrete example, we show that our results can be directly used to give sample complexities for learning a ReLU unit.


Is Q-Learning Provably Efficient?

Neural Information Processing Systems

Model-free reinforcement learning (RL) algorithms directly parameterize and update value functions or policies, bypassing the modeling of the environment. They are typically simpler, more flexible to use, and thus more prevalent in modern deep RL than model-based approaches. However, empirical work has suggested that they require large numbers of samples to learn. The theoretical question of whether not model-free algorithms are in fact \emph{sample efficient} is one of the most fundamental questions in RL. The problem is unsolved even in the basic scenario with finitely many states and actions. We prove that, in an episodic MDP setting, Q-learning with UCB exploration achieves regret $\tlO(\sqrt{H^3 SAT})$ where $S$ and $A$ are the numbers of states and actions, $H$ is the number of steps per episode, and $T$ is the total number of steps. Our regret matches the optimal regret up to a single $\sqrt{H}$ factor. Thus we establish the sample efficiency of a classical model-free approach. Moreover, to the best of our knowledge, this is the first model-free analysis to establish $\sqrt{T}$ regret \emph{without} requiring access to a ``simulator.''


Is Q-Learning Provably Efficient?

Neural Information Processing Systems

Model-free reinforcement learning (RL) algorithms directly parameterize and update value functions or policies, bypassing the modeling of the environment. They are typically simpler, more flexible to use, and thus more prevalent in modern deep RL than model-based approaches. However, empirical work has suggested that they require large numbers of samples to learn. The theoretical question of whether not model-free algorithms are in fact \emph{sample efficient} is one of the most fundamental questions in RL. The problem is unsolved even in the basic scenario with finitely many states and actions. We prove that, in an episodic MDP setting, Q-learning with UCB exploration achieves regret $\tlO(\sqrt{H^3 SAT})$ where $S$ and $A$ are the numbers of states and actions, $H$ is the number of steps per episode, and $T$ is the total number of steps. Our regret matches the optimal regret up to a single $\sqrt{H}$ factor. Thus we establish the sample efficiency of a classical model-free approach. Moreover, to the best of our knowledge, this is the first model-free analysis to establish $\sqrt{T}$ regret \emph{without} requiring access to a ``simulator.''


On the Local Minima of the Empirical Risk

Neural Information Processing Systems

Population risk is always of primary interest in machine learning; however, learning algorithms only have access to the empirical risk. Even for applications with nonconvex non-smooth losses (such as modern deep networks), the population risk is generally significantly more well behaved from an optimization point of view than the empirical risk. In particular, sampling can create many spurious local minima. We consider a general framework which aims to optimize a smooth nonconvex function $F$ (population risk) given only access to an approximation $f$ (empirical risk) that is pointwise close to $F$ (i.e., $\norm{F-f}_{\infty} \le \nu$). Our objective is to find the $\epsilon$-approximate local minima of the underlying function $F$ while avoiding the shallow local minima---arising because of the tolerance $\nu$---which exist only in $f$. We propose a simple algorithm based on stochastic gradient descent (SGD) on a smoothed version of $f$ that is guaranteed to achieve our goal as long as $\nu \le O(\epsilon^{1.5}/d)$. We also provide an almost matching lower bound showing that our algorithm achieves optimal error tolerance $\nu$ among all algorithms making a polynomial number of queries of $f$. As a concrete example, we show that our results can be directly used to give sample complexities for learning a ReLU unit.