Goto

Collaborating Authors

 Jin, Chi


Pok\'eChamp: an Expert-level Minimax Language Agent

arXiv.org Artificial Intelligence

We introduce Pok\'eChamp, a minimax agent powered by Large Language Models (LLMs) for Pok\'emon battles. Built on a general framework for two-player competitive games, Pok\'eChamp leverages the generalist capabilities of LLMs to enhance minimax tree search. Specifically, LLMs replace three key modules: (1) player action sampling, (2) opponent modeling, and (3) value function estimation, enabling the agent to effectively utilize gameplay history and human knowledge to reduce the search space and address partial observability. Notably, our framework requires no additional LLM training. We evaluate Pok\'eChamp in the popular Gen 9 OU format. When powered by GPT-4o, it achieves a win rate of 76% against the best existing LLM-based bot and 84% against the strongest rule-based bot, demonstrating its superior performance. Even with an open-source 8-billion-parameter Llama 3.1 model, Pok\'eChamp consistently outperforms the previous best LLM-based bot, Pok\'ellmon powered by GPT-4o, with a 64% win rate. Pok\'eChamp attains a projected Elo of 1300-1500 on the Pok\'emon Showdown online ladder, placing it among the top 30%-10% of human players. In addition, this work compiles the largest real-player Pok\'emon battle dataset, featuring over 3 million games, including more than 500k high-Elo matches. Based on this dataset, we establish a series of battle benchmarks and puzzles to evaluate specific battling skills. We further provide key updates to the local game engine. We hope this work fosters further research that leverage Pok\'emon battle as benchmark to integrate LLM technologies with game-theoretic algorithms addressing general multiagent problems. Videos, code, and dataset available at https://sites.google.com/view/pokechamp-llm.


Is Elo Rating Reliable? A Study Under Model Misspecification

arXiv.org Machine Learning

Elo rating, widely used for skill assessment across diverse domains ranging from competitive games to large language models, is often understood as an incremental update algorithm for estimating a stationary Bradley-Terry (BT) model. However, our empirical analysis of practical matching datasets reveals two surprising findings: (1) Most games deviate significantly from the assumptions of the BT model and stationarity, raising questions on the reliability of Elo. (2) Despite these deviations, Elo frequently outperforms more complex rating systems, such as mElo and pairwise models, which are specifically designed to account for non-BT components in the data, particularly in terms of win rate prediction. This paper explains this unexpected phenomenon through three key perspectives: (a) We reinterpret Elo as an instance of online gradient descent, which provides no-regret guarantees even in misspecified and non-stationary settings. (b) Through extensive synthetic experiments on data generated from transitive but non-BT models, such as strongly or weakly stochastic transitive models, we show that the ''sparsity'' of practical matching data is a critical factor behind Elo's superior performance in prediction compared to more complex rating systems. (c) We observe a strong correlation between Elo's predictive accuracy and its ranking performance, further supporting its effectiveness in ranking.


Goedel-Prover: A Frontier Model for Open-Source Automated Theorem Proving

arXiv.org Artificial Intelligence

We introduce Goedel-Prover, an open-source large language model (LLM) that achieves the state-of-the-art (SOTA) performance in automated formal proof generation for mathematical problems. The key challenge in this field is the scarcity of formalized math statements and proofs, which we tackle in the following ways. We train statement formalizers to translate the natural language math problems from Numina into formal language (Lean 4), creating a dataset of 1.64 million formal statements. LLMs are used to check that the formal statements accurately preserve the content of the original natural language problems. We then iteratively build a large dataset of formal proofs by training a series of provers. Each prover succeeds in proving many statements that the previous ones could not, and these new proofs are added to the training set for the next prover. Despite using only supervised fine-tuning, our final prover significantly outperforms the previous best open-source model, DeepSeek-Prover-V1.5, which employs reinforcement learning. On the miniF2F benchmark, our model achieves a success rate of 57.6% (Pass@32), surpassing DeepSeek-Prover-V1.5 by 7.6%. On PutnamBench, Goedel-Prover successfully solves 7 problems (Pass@512), ranking first on the leaderboard. Furthermore, it generates 29.7K formal proofs for Lean Workbook problems, nearly doubling the 15.7K produced by earlier works.


MATH-Perturb: Benchmarking LLMs' Math Reasoning Abilities against Hard Perturbations

arXiv.org Artificial Intelligence

Large language models have demonstrated impressive performance on challenging mathematical reasoning tasks, which has triggered the discussion of whether the performance is achieved by true reasoning capability or memorization. To investigate this question, prior work has constructed mathematical benchmarks when questions undergo simple perturbations -- modifications that still preserve the underlying reasoning patterns of the solutions. However, no work has explored hard perturbations, which fundamentally change the nature of the problem so that the original solution steps do not apply. To bridge the gap, we construct MATH-P-Simple and MATH-P-Hard via simple perturbation and hard perturbation, respectively. Each consists of 279 perturbed math problems derived from level-5 (hardest) problems in the MATH dataset (Hendrycksmath et. al., 2021). We observe significant performance drops on MATH-P-Hard across various models, including o1-mini (-16.49%) and gemini-2.0-flash-thinking (-12.9%). We also raise concerns about a novel form of memorization where models blindly apply learned problem-solving skills without assessing their applicability to modified contexts. This issue is amplified when using original problems for in-context learning. We call for research efforts to address this challenge, which is critical for developing more robust and reliable reasoning models.


Rethinking Mixture-of-Agents: Is Mixing Different Large Language Models Beneficial?

arXiv.org Artificial Intelligence

Ensembling outputs from diverse sources is a straightforward yet effective approach to boost performance. Mixture-of-Agents (MoA) is one such popular ensemble method that aggregates outputs from multiple different Large Language Models (LLMs). This paper raises the question in the context of language models: is mixing different LLMs truly beneficial? We propose Self-MoA -- an ensemble method that aggregates outputs from only the single top-performing LLM. Our extensive experiments reveal that, surprisingly, Self-MoA outperforms standard MoA that mixes different LLMs in a large number of scenarios: Self-MoA achieves $6.6\%$ improvement over MoA on the AlpacaEval 2.0 benchmark, and an average of $3.8\%$ improvement across various benchmarks, including MMLU, CRUX, and MATH. Applying Self-MoA to one of the top-ranking models in AlpacaEval 2.0 directly achieves the new state-of-the-art performance on the leaderboard. To understand the effectiveness of Self-MoA, we systematically investigate the trade-off between diversity and quality of outputs under various MoA settings. We confirm that the MoA performance is rather sensitive to the quality, and mixing different LLMs often lowers the average quality of the models. To complement the study, we identify the scenarios where mixing different LLMs could be helpful. This paper further introduces a sequential version of Self-MoA, that is capable of aggregating a large number of LLM outputs on-the-fly over multiple rounds, and is as effective as aggregating all outputs at once.


Generative Diffusion Modeling: A Practical Handbook

arXiv.org Artificial Intelligence

This handbook offers a unified perspective on diffusion models, encompassing diffusion probabilistic models, score-based generative models, consistency models, rectified flow, and related methods. By standardizing notations and aligning them with code implementations, it aims to bridge the "paper-to-code" gap and facilitate robust implementations and fair comparisons. The content encompasses the fundamentals of diffusion models, the pre-training process, and various post-training methods. Post-training techniques include model distillation and reward-based fine-tuning. Designed as a practical guide, it emphasizes clarity and usability over theoretical depth, focusing on widely adopted approaches in generative modeling with diffusion models.


Benign Overfitting in Out-of-Distribution Generalization of Linear Models

arXiv.org Machine Learning

Benign overfitting refers to the phenomenon where an over-parameterized model fits the training data perfectly, including noise in the data, but still generalizes well to the unseen test data. While prior work provides some theoretical understanding of this phenomenon under the in-distribution setup, modern machine learning often operates in a more challenging Out-of-Distribution (OOD) regime, where the target (test) distribution can be rather different from the source (training) distribution. In this work, we take an initial step towards understanding benign overfitting in the OOD regime by focusing on the basic setup of over-parameterized linear models under covariate shift. We provide non-asymptotic guarantees proving that benign overfitting occurs in standard ridge regression, even under the OOD regime when the target covariance satisfies certain structural conditions. We identify several vital quantities relating to source and target covariance, which govern the performance of OOD generalization. Our result is sharp, which provably recovers prior in-distribution benign overfitting guarantee [Tsigler and Bartlett, 2023], as well as under-parameterized OOD guarantee [Ge et al., 2024] when specializing to each setup. Moreover, we also present theoretical results for a more general family of target covariance matrix, where standard ridge regression only achieves a slow statistical rate of $O(1/\sqrt{n})$ for the excess risk, while Principal Component Regression (PCR) is guaranteed to achieve the fast rate $O(1/n)$, where $n$ is the number of samples.


FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

Recent advances in reinforcement learning (RL) heavily rely on a variety of well-designed benchmarks, which provide environmental platforms and consistent criteria to evaluate existing and novel algorithms. Specifically, in multi-agent RL (MARL), a plethora of benchmarks based on cooperative games have spurred the development of algorithms that improve the scalability of cooperative multi-agent systems. However, for the competitive setting, a lightweight and open-sourced benchmark with challenging gaming dynamics and visual inputs has not yet been established. In this work, we present FightLadder, a real-time fighting game platform, to empower competitive MARL research. Along with the platform, we provide implementations of state-of-the-art MARL algorithms for competitive games, as well as a set of evaluation metrics to characterize the performance and exploitability of agents. We demonstrate the feasibility of this platform by training a general agent that consistently defeats 12 built-in characters in single-player mode, and expose the difficulty of training a non-exploitable agent without human knowledge and demonstrations in two-player mode. FightLadder provides meticulously designed environments to address critical challenges in competitive MARL research, aiming to catalyze a new era of discovery and advancement in the field. Videos and code at https://sites.google.com/view/fightladder/home.


Towards Principled Superhuman AI for Multiplayer Symmetric Games

arXiv.org Machine Learning

Multiplayer games, when the number of players exceeds two, present unique challenges that fundamentally distinguish them from the extensively studied two-player zero-sum games. These challenges arise from the non-uniqueness of equilibria and the risk of agents performing highly suboptimally when adopting equilibrium strategies. While a line of recent works developed learning systems successfully achieving human-level or even superhuman performance in popular multiplayer games such as Mahjong, Poker, and Diplomacy, two critical questions remain unaddressed: (1) What is the correct solution concept that AI agents should find? and (2) What is the general algorithmic framework that provably solves all games within this class? This paper takes the first step towards solving these unique challenges of multiplayer games by provably addressing both questions in multiplayer symmetric normal-form games. We also demonstrate that many meta-algorithms developed in prior practical systems for multiplayer games can fail to achieve even the basic goal of obtaining agent's equal share of the total reward.


On Limitation of Transformer for Learning HMMs

arXiv.org Artificial Intelligence

Despite the remarkable success of Transformer-based architectures in various sequential modeling tasks, such as natural language processing, computer vision, and robotics, their ability to learn basic sequential models, like Hidden Markov Models (HMMs), is still unclear. This paper investigates the performance of Transformers in learning HMMs and their variants through extensive experimentation and compares them to Recurrent Neural Networks (RNNs). We show that Transformers consistently underperform RNNs in both training speed and testing accuracy across all tested HMM models. There are even challenging HMM instances where Transformers struggle to learn, while RNNs can successfully do so. Our experiments further reveal the relation between the depth of Transformers and the longest sequence length it can effectively learn, based on the types and the complexity of HMMs. To address the limitation of transformers in modeling HMMs, we demonstrate that a variant of the Chain-of-Thought (CoT), called $\textit{block CoT}$ in the training phase, can help transformers to reduce the evaluation error and to learn longer sequences at a cost of increasing the training time. Finally, we complement our empirical findings by theoretical results proving the expressiveness of transformers in approximating HMMs with logarithmic depth.