Jin, Cheng
PsychBench: A comprehensive and professional benchmark for evaluating the performance of LLM-assisted psychiatric clinical practice
Wang, Ruoxi, Liu, Shuyu, Zhang, Ling, Zhu, Xuequan, Yang, Rui, Zhou, Xinzhu, Wu, Fei, Yang, Zhi, Jin, Cheng, Wang, Gang
The advent of Large Language Models (LLMs) offers potential solutions to address problems such as shortage of medical resources and low diagnostic consistency in psychiatric clinical practice. Despite this potential, a robust and comprehensive benchmarking framework to assess the efficacy of LLMs in authentic psychiatric clinical environments is absent. This has impeded the advancement of specialized LLMs tailored to psychiatric applications. In response to this gap, by incorporating clinical demands in psychiatry and clinical data, we proposed a benchmarking system, PsychBench, to evaluate the practical performance of LLMs in psychiatric clinical settings. We conducted a comprehensive quantitative evaluation of 16 LLMs using PsychBench, and investigated the impact of prompt design, chain-of-thought reasoning, input text length, and domain-specific knowledge fine-tuning on model performance. Through detailed error analysis, we identified strengths and potential limitations of the existing models and suggested directions for improvement. Subsequently, a clinical reader study involving 60 psychiatrists of varying seniority was conducted to further explore the practical benefits of existing LLMs as supportive tools for psychiatrists of varying seniority. Through the quantitative and reader evaluation, we show that while existing models demonstrate significant potential, they are not yet adequate as decision-making tools in psychiatric clinical practice. The reader study further indicates that, as an auxiliary tool, LLM could provide particularly notable support for junior psychiatrists, effectively enhancing their work efficiency and overall clinical quality. To promote research in this area, we will make the dataset and evaluation framework publicly available, with the hope of advancing the application of LLMs in psychiatric clinical settings.
Optimized Gradient Clipping for Noisy Label Learning
Ye, Xichen, Wu, Yifan, Zhang, Weizhong, Li, Xiaoqiang, Chen, Yifan, Jin, Cheng
Previous research has shown that constraining the gradient of loss function with respect to model-predicted probabilities can enhance the model robustness against noisy labels. These methods typically specify a fixed optimal threshold for gradient clipping through validation data to obtain the desired robustness against noise. However, this common practice overlooks the dynamic distribution of gradients from both clean and noisy-labeled samples at different stages of training, significantly limiting the model capability to adapt to the variable nature of gradients throughout the training process. To address this issue, we propose a simple yet effective approach called Optimized Gradient Clipping (OGC), which dynamically adjusts the clipping threshold based on the ratio of noise gradients to clean gradients after clipping, estimated by modeling the distributions of clean and noisy samples. This approach allows us to modify the clipping threshold at each training step, effectively controlling the influence of noise gradients. Additionally, we provide statistical analysis to certify the noise-tolerance ability of OGC. Our extensive experiments across various types of label noise, including symmetric, asymmetric, instance-dependent, and real-world noise, demonstrate the effectiveness of our approach.
HammerBench: Fine-Grained Function-Calling Evaluation in Real Mobile Device Scenarios
Wang, Jun, Zhou, Jiamu, Wen, Muning, Mo, Xiaoyun, Zhang, Haoyu, Lin, Qiqiang, Jin, Cheng, Wang, Xihuai, Zhang, Weinan, Peng, Qiuying, Wang, Jun
Evaluating the capabilities of large language models (LLMs) in human-LLM interactions remains challenging due to the inherent complexity and openness of dialogue processes. This paper introduces HammerBench, a novel benchmarking framework designed to assess the function-calling ability of LLMs more effectively in such interactions. We model a wide range of real-world user scenarios on mobile devices, encompassing imperfect instructions, diverse question-answer trajectories, intent/argument shifts, and the use of external individual information through pronouns. To construct the corresponding datasets, we propose a comprehensive pipeline that involves LLM-generated data and multiple rounds of human validation, ensuring high data quality. Additionally, we decompose the conversations into function-calling snapshots, enabling a fine-grained evaluation of each turn. We evaluate several popular LLMs using HammerBench and highlight different performance aspects. Our empirical findings reveal that errors in parameter naming constitute the primary factor behind conversation failures across different data types.
GameGen-X: Interactive Open-world Game Video Generation
Che, Haoxuan, He, Xuanhua, Liu, Quande, Jin, Cheng, Chen, Hao
We introduce GameGen-X, the first diffusion transformer model specifically designed for both generating and interactively controlling open-world game videos. This model facilitates high-quality, open-domain generation by simulating an extensive array of game engine features, such as innovative characters, dynamic environments, complex actions, and diverse events. Additionally, it provides interactive controllability, predicting and altering future content based on the current clip, thus allowing for gameplay simulation. To realize this vision, we first collected and built an Open-World Video Game Dataset from scratch. It is the first and largest dataset for open-world game video generation and control, which comprises over a million diverse gameplay video clips sampling from over 150 games with informative captions from GPT-4o. GameGen-X undergoes a two-stage training process, consisting of foundation model pre-training and instruction tuning. Firstly, the model was pre-trained via text-to-video generation and video continuation, endowing it with the capability for long-sequence, high-quality open-domain game video generation. Further, to achieve interactive controllability, we designed InstructNet to incorporate game-related multi-modal control signal experts. This allows the model to adjust latent representations based on user inputs, unifying character interaction and scene content control for the first time in video generation. During instruction tuning, only the InstructNet is updated while the pre-trained foundation model is frozen, enabling the integration of interactive controllability without loss of diversity and quality of generated video content.
MagicFace: Training-free Universal-Style Human Image Customized Synthesis
Wang, Yibin, Zhang, Weizhong, Jin, Cheng
Current state-of-the-art methods for human image customized synthesis typically require tedious training on large-scale datasets. In such cases, they are prone to overfitting and struggle to personalize individuals of unseen styles. Moreover, these methods extensively focus on single-concept human image synthesis and lack the flexibility needed for customizing individuals with multiple given concepts, thereby impeding their broader practical application. To this end, we propose MagicFace, a novel training-free method for universal-style human image personalized synthesis, enabling multi-concept customization by accurately integrating reference concept features into their latent generated region at the pixel level. Specifically, MagicFace introduces a coarse-to-fine generation pipeline, involving two sequential stages: semantic layout construction and concept feature injection. This is achieved by our Reference-aware Self-Attention (RSA) and Region-grouped Blend Attention (RBA) mechanisms. In the first stage, RSA enables the latent image to query features from all reference concepts simultaneously, extracting the overall semantic understanding to facilitate the initial semantic layout establishment. In the second stage, we employ an attention-based semantic segmentation method to pinpoint the latent generated regions of all concepts at each step. Following this, RBA divides the pixels of the latent image into semantic groups, with each group querying fine-grained features from the corresponding reference concept, which ensures precise attribute alignment and feature injection. Throughout the generation process, a weighted mask strategy is employed to ensure the model focuses more on the reference concepts. Extensive experiments demonstrate the superiority of MagicFace in both human-centric subject-to-image synthesis and multi-concept human image customization.
Unleashing the Denoising Capability of Diffusion Prior for Solving Inverse Problems
Zhang, Jiawei, Zhuang, Jiaxin, Jin, Cheng, Li, Gen, Gu, Yuantao
The recent emergence of diffusion models has significantly advanced the precision of learnable priors, presenting innovative avenues for addressing inverse problems. Since inverse problems inherently entail maximum a posteriori estimation, previous works have endeavored to integrate diffusion priors into the optimization frameworks. However, prevailing optimization-based inverse algorithms primarily exploit the prior information within the diffusion models while neglecting their denoising capability. To bridge this gap, this work leverages the diffusion process to reframe noisy inverse problems as a two-variable constrained optimization task by introducing an auxiliary optimization variable. By employing gradient truncation, the projection gradient descent method is efficiently utilized to solve the corresponding optimization problem. The proposed algorithm, termed ProjDiff, effectively harnesses the prior information and the denoising capability of a pre-trained diffusion model within the optimization framework. Extensive experiments on the image restoration tasks and source separation and partial generation tasks demonstrate that ProjDiff exhibits superior performance across various linear and nonlinear inverse problems, highlighting its potential for practical applications. Code is available at https://github.com/weigerzan/ProjDiff/.
High Fidelity Scene Text Synthesis
Wang, Yibin, Zhang, Weizhong, Zheng, Jianwei, Jin, Cheng
Scene text synthesis involves rendering specified texts onto arbitrary images. Current methods typically formulate this task in an end-to-end manner but lack effective character-level guidance during training. Besides, their text encoders, pre-trained on a single font type, struggle to adapt to the diverse font styles encountered in practical applications. Consequently, these methods suffer from character distortion, repetition, and absence, particularly in polystylistic scenarios. To this end, this paper proposes DreamText for high-fidelity scene text synthesis. Our key idea is to reconstruct the diffusion training process, introducing more refined guidance tailored to this task, to expose and rectify the model's attention at the character level and strengthen its learning of text regions. This transformation poses a hybrid optimization challenge, involving both discrete and continuous variables. To effectively tackle this challenge, we employ a heuristic alternate optimization strategy. Meanwhile, we jointly train the text encoder and generator to comprehensively learn and utilize the diverse font present in the training dataset. This joint training is seamlessly integrated into the alternate optimization process, fostering a synergistic relationship between learning character embedding and re-estimating character attention. Specifically, in each step, we first encode potential character-generated position information from cross-attention maps into latent character masks. These masks are then utilized to update the representation of specific characters in the current step, which, in turn, enables the generator to correct the character's attention in the subsequent steps. Both qualitative and quantitative results demonstrate the superiority of our method to the state of the art.
PrimeComposer: Faster Progressively Combined Diffusion for Image Composition with Attention Steering
Wang, Yibin, Zhang, Weizhong, Zheng, Jianwei, Jin, Cheng
Image composition involves seamlessly integrating given objects into a specific visual context. The current training-free methods rely on composing attention weights from several samplers to guide the generator. However, since these weights are derived from disparate contexts, their combination leads to coherence confusion in synthesis and loss of appearance information. These issues worsen with their excessive focus on background generation, even when unnecessary in this task. This not only slows down inference but also compromises foreground generation quality. Moreover, these methods introduce unwanted artifacts in the transition area. In this paper, we formulate image composition as a subject-based local editing task, solely focusing on foreground generation. At each step, the edited foreground is combined with the noisy background to maintain scene consistency. To address the remaining issues, we propose PrimeComposer, a faster training-free diffuser that composites the images by well-designed attention steering across different noise levels. This steering is predominantly achieved by our Correlation Diffuser, utilizing its self-attention layers at each step. Within these layers, the synthesized subject interacts with both the referenced object and background, capturing intricate details and coherent relationships. This prior information is encoded into the attention weights, which are then integrated into the self-attention layers of the generator to guide the synthesis process. Besides, we introduce a Region-constrained Cross-Attention to confine the impact of specific subject-related words to desired regions, addressing the unwanted artifacts shown in the prior method thereby further improving the coherence in the transition area. Our method exhibits the fastest inference efficiency and extensive experiments demonstrate our superiority both qualitatively and quantitatively.
EPA: Neural Collapse Inspired Robust Out-of-Distribution Detector
Zhang, Jiawei, Chen, Yufan, Jin, Cheng, Zhu, Lei, Gu, Yuantao
Out-of-distribution (OOD) detection plays a crucial role in ensuring the security of neural networks. Existing works have leveraged the fact that In-distribution (ID) samples form a subspace in the feature space, achieving state-of-the-art (SOTA) performance. However, the comprehensive characteristics of the ID subspace still leave under-explored. Recently, the discovery of Neural Collapse ($\mathcal{NC}$) sheds light on novel properties of the ID subspace. Leveraging insight from $\mathcal{NC}$, we observe that the Principal Angle between the features and the ID feature subspace forms a superior representation for measuring the likelihood of OOD. Building upon this observation, we propose a novel $\mathcal{NC}$-inspired OOD scoring function, named Entropy-enhanced Principal Angle (EPA), which integrates both the global characteristic of the ID subspace and its inner property. We experimentally compare EPA with various SOTA approaches, validating its superior performance and robustness across different network architectures and OOD datasets.
Label-Efficient Deep Learning in Medical Image Analysis: Challenges and Future Directions
Jin, Cheng, Guo, Zhengrui, Lin, Yi, Luo, Luyang, Chen, Hao
Deep learning has seen rapid growth in recent years and achieved state-of-the-art performance in a wide range of applications. However, training models typically requires expensive and time-consuming collection of large quantities of labeled data. This is particularly true within the scope of medical imaging analysis (MIA), where data are limited and labels are expensive to be acquired. Thus, label-efficient deep learning methods are developed to make comprehensive use of the labeled data as well as the abundance of unlabeled and weak-labeled data. In this survey, we extensively investigated over 300 recent papers to provide a comprehensive overview of recent progress on label-efficient learning strategies in MIA. We first present the background of label-efficient learning and categorize the approaches into different schemes. Next, we examine the current state-of-the-art methods in detail through each scheme. Specifically, we provide an in-depth investigation, covering not only canonical semi-supervised, self-supervised, and multi-instance learning schemes, but also recently emerged active and annotation-efficient learning strategies. Moreover, as a comprehensive contribution to the field, this survey not only elucidates the commonalities and unique features of the surveyed methods but also presents a detailed analysis of the current challenges in the field and suggests potential avenues for future research.