Jiménez-Ruiz, Ernesto
Information for Conversation Generation: Proposals Utilising Knowledge Graphs
Clay, Alex, Jiménez-Ruiz, Ernesto
LLMs are frequently used tools for conversational generation. Without additional information LLMs can generate lower quality responses due to lacking relevant content and hallucinations, as well as the perception of poor emotional capability, and an inability to maintain a consistent character. Knowledge graphs are commonly used forms of external knowledge and may provide solutions to these challenges. This paper introduces three proposals, utilizing knowledge graphs to enhance LLM generation. Firstly, dynamic knowledge graph embeddings and recommendation could allow for the integration of new information and the selection of relevant knowledge for response generation. Secondly, storing entities with emotional values as additional features may provide knowledge that is better emotionally aligned with the user input. Thirdly, integrating character information through narrative bubbles would maintain character consistency, as well as introducing a structure that would readily incorporate new information.
Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities
Chen, Jiaoyan, Dong, Hang, Hastings, Janna, Jiménez-Ruiz, Ernesto, López, Vanessa, Monnin, Pierre, Pesquita, Catia, Škoda, Petr, Tamma, Valentina
The term life sciences refers to the disciplines that study living organisms and life processes, and include chemistry, biology, medicine, and a range of other related disciplines. Research efforts in life sciences are heavily data-driven, as they produce and consume vast amounts of scientific data, much of which is intrinsically relational and graph-structured. The volume of data and the complexity of scientific concepts and relations referred to therein promote the application of advanced knowledge-driven technologies for managing and interpreting data, with the ultimate aim to advance scientific discovery. In this survey and position paper, we discuss recent developments and advances in the use of graph-based technologies in life sciences and set out a vision for how these technologies will impact these fields into the future. We focus on three broad topics: the construction and management of Knowledge Graphs (KGs), the use of KGs and associated technologies in the discovery of new knowledge, and the use of KGs in artificial intelligence applications to support explanations (explainable AI). We select a few exemplary use cases for each topic, discuss the challenges and open research questions within these topics, and conclude with a perspective and outlook that summarizes the overarching challenges and their potential solutions as a guide for future research.
Machine Learning-Friendly Biomedical Datasets for Equivalence and Subsumption Ontology Matching
He, Yuan, Chen, Jiaoyan, Dong, Hang, Jiménez-Ruiz, Ernesto, Hadian, Ali, Horrocks, Ian
Ontology Matching (OM) plays an important role in many domains such as bioinformatics and the Semantic Web, and its research is becoming increasingly popular, especially with the application of machine learning (ML) techniques. Although the Ontology Alignment Evaluation Initiative (OAEI) represents an impressive effort for the systematic evaluation of OM systems, it still suffers from several limitations including limited evaluation of subsumption mappings, suboptimal reference mappings, and limited support for the evaluation of ML-based systems. To tackle these limitations, we introduce five new biomedical OM tasks involving ontologies extracted from Mondo and UMLS. Each task includes both equivalence and subsumption matching; the quality of reference mappings is ensured by human curation, ontology pruning, etc.; and a comprehensive evaluation framework is proposed to measure OM performance from various perspectives for both ML-based and non-ML-based OM systems. We report evaluation results for OM systems of different types to demonstrate the usage of these resources, all of which are publicly available as part of the new Bio-ML track at OAEI 2022.
NeSy4VRD: A Multifaceted Resource for Neurosymbolic AI Research using Knowledge Graphs in Visual Relationship Detection
Herron, David, Jiménez-Ruiz, Ernesto, Tarroni, Giacomo, Weyde, Tillman
NeSy4VRD is a multifaceted resource designed to support the development of neurosymbolic AI (NeSy) research. NeSy4VRD re-establishes public access to the images of the VRD dataset and couples them with an extensively revised, quality-improved version of the VRD visual relationship annotations. Crucially, NeSy4VRD provides a well-aligned, companion OWL ontology that describes the dataset domain. It comes with open source infrastructure that provides comprehensive support for extensibility of the annotations (which, in turn, facilitates extensibility of the ontology), and open source code for loading the annotations to/from a knowledge graph. We are contributing NeSy4VRD to the computer vision, NeSy and Semantic Web communities to help foster more NeSy research using OWL-based knowledge graphs.
Language Model Analysis for Ontology Subsumption Inference
He, Yuan, Chen, Jiaoyan, Jiménez-Ruiz, Ernesto, Dong, Hang, Horrocks, Ian
Investigating whether pre-trained language models (LMs) can function as knowledge bases (KBs) has raised wide research interests recently. However, existing works focus on simple, triple-based, relational KBs, but omit more sophisticated, logic-based, conceptualised KBs such as OWL ontologies. To investigate an LM's knowledge of ontologies, we propose OntoLAMA, a set of inference-based probing tasks and datasets from ontology subsumption axioms involving both atomic and complex concepts. We conduct extensive experiments on ontologies of different domains and scales, and our results demonstrate that LMs encode relatively less background knowledge of Subsumption Inference (SI) than traditional Natural Language Inference (NLI) but can improve on SI significantly when a small number of samples are given. We will open-source our code and datasets.
Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings
Myklebust, Erik B., Jiménez-Ruiz, Ernesto, Chen, Jiaoyan, Wolf, Raoul, Tollefsen, Knut Erik
We have created a knowledge graph based on major data sources used in ecotoxicological risk assessment. We have applied this knowledge graph to an important task in risk assessment, namely chemical effect prediction. We have evaluated nine knowledge graph embedding models from a selection of geometric, decomposition, and convolutional models on this prediction task. We show that using knowledge graph embeddings can increase the accuracy of effect prediction with neural networks. Furthermore, we have implemented a fine-tuning architecture which adapts the knowledge graph embeddings to the effect prediction task and leads to a better performance. Finally, we evaluate certain characteristics of the knowledge graph embedding models to shed light on the individual model performance.
Evaluating Ontology Matching Systems on Large, Multilingual and Real-world Test Cases
Meilicke, Christian, Sváb-Zamazal, Ondrej, Trojahn, Cássia, Jiménez-Ruiz, Ernesto, Aguirre, José-Luis, Stuckenschmidt, Heiner, Grau, Bernardo Cuenca
In the field of ontology matching, the most systematic evaluation of matching systems is established by the Ontology Alignment Evaluation Initiative (OAEI), which is an annual campaign for evaluating ontology matching systems organized by different groups of researchers. In this paper, we report on the results of an intermediary OAEI campaign called OAEI 2011.5. The evaluations of this campaign are divided in five tracks. Three of these tracks are new or have been improved compared to previous OAEI campaigns. Overall, we evaluated 18 matching systems. We discuss lessons learned, in terms of scalability, multilingual issues and the ability do deal with real world cases from different domains.