Goto

Collaborating Authors

 Jiao, Xiang


Task-oriented Over-the-air Computation for Edge-device Co-inference with Balanced Classification Accuracy

arXiv.org Artificial Intelligence

Edge-device co-inference, which concerns the cooperation between edge devices and an edge server for completing inference tasks over wireless networks, has been a promising technique for enabling various kinds of intelligent services at the network edge, e.g., auto-driving. In this paradigm, the concerned design objective of the network shifts from the traditional communication throughput to the effective and efficient execution of the inference task underpinned by the network, measured by, e.g., the inference accuracy and latency. In this paper, a task-oriented over-the-air computation scheme is proposed for a multidevice artificial intelligence system. Particularly, a novel tractable inference accuracy metric is proposed for classification tasks, which is called minimum pair-wise discriminant gain. Unlike prior work measuring the average of all class pairs in feature space, it measures the minimum distance of all class pairs. By maximizing the minimum pair-wise discriminant gain instead of its average counterpart, any pair of classes can be better separated in the feature space, and thus leading to a balanced and improved inference accuracy for all classes. Besides, this paper jointly optimizes the minimum discriminant gain of all feature elements instead of separately maximizing that of each element in the existing designs. As a result, the transmit power can be adaptively allocated to the feature elements according to their different contributions to the inference accuracy, opening an extra degree of freedom to improve inference performance. Extensive experiments are conducted using a concrete use case of human motion recognition to verify the superiority of the proposed design over the benchmarking scheme.


Task-Oriented Over-the-Air Computation for Multi-Device Edge AI

arXiv.org Artificial Intelligence

Departing from the classic paradigm of data-centric designs, the 6G networks for supporting edge AI features task-oriented techniques that focus on effective and efficient execution of AI task. Targeting end-to-end system performance, such techniques are sophisticated as they aim to seamlessly integrate sensing (data acquisition), communication (data transmission), and computation (data processing). Aligned with the paradigm shift, a task-oriented over-the-air computation (AirComp) scheme is proposed in this paper for multi-device split-inference system. In the considered system, local feature vectors, which are extracted from the real-time noisy sensory data on devices, are aggregated over-the-air by exploiting the waveform superposition in a multiuser channel. Then the aggregated features as received at a server are fed into an inference model with the result used for decision making or control of actuators. To design inference-oriented AirComp, the transmit precoders at edge devices and receive beamforming at edge server are jointly optimized to rein in the aggregation error and maximize the inference accuracy. The problem is made tractable by measuring the inference accuracy using a surrogate metric called discriminant gain, which measures the discernibility of two object classes in the application of object/event classification. It is discovered that the conventional AirComp beamforming design for minimizing the mean square error in generic AirComp with respect to the noiseless case may not lead to the optimal classification accuracy. The reason is due to the overlooking of the fact that feature dimensions have different sensitivity towards aggregation errors and are thus of different importance levels for classification. This issue is addressed in this work via a new task-oriented AirComp scheme designed by directly maximizing the derived discriminant gain.