Goto

Collaborating Authors

 Jiang, Zheyuan


Think on your feet: Seamless Transition between Human-like Locomotion in Response to Changing Commands

arXiv.org Artificial Intelligence

While it is relatively easier to train humanoid robots to mimic specific locomotion skills, it is more challenging to learn from various motions and adhere to continuously changing commands. These robots must accurately track motion instructions, seamlessly transition between a variety of movements, and master intermediate motions not present in their reference data. In this work, we propose a novel approach that integrates human-like motion transfer with precise velocity tracking by a series of improvements to classical imitation learning. To enhance generalization, we employ the Wasserstein divergence criterion (WGAN-div). Furthermore, a Hybrid Internal Model provides structured estimates of hidden states and velocity to enhance mobile stability and environment adaptability, while a curiosity bonus fosters exploration. Our comprehensive method promises highly human-like locomotion that adapts to varying velocity requirements, direct generalization to unseen motions and multitasking, as well as zero-shot transfer to the simulator and the real world across different terrains. These advancements are validated through simulations across various robot models and extensive real-world experiments.


Learning Robust, Agile, Natural Legged Locomotion Skills in the Wild

arXiv.org Artificial Intelligence

Recently, reinforcement learning has become a promising and polular solution for robot legged locomotion. Compared to model-based control, reinforcement learning based controllers can achieve better robustness against uncertainties of environments through sim-to-real learning. However, the corresponding learned gaits are in general overly conservative and unatural. In this paper, we propose a new framework for learning robust, agile and natural legged locomotion skills over challenging terrain. We incorporate an adversarial training branch based on real animal locomotion data upon a teacher-student training pipeline for robust sim-to-real transfer. Empirical results on both simulation and real world of a quadruped robot demonstrate that our proposed algorithm enables robustly traversing challenging terrains such as stairs, rocky ground and slippery floor with only proprioceptive perception. Meanwhile, the gaits are more agile, natural, and energy efficient compared to the baselines. Both qualitative and quantitative results are presented in this paper.


DoReMi: Grounding Language Model by Detecting and Recovering from Plan-Execution Misalignment

arXiv.org Artificial Intelligence

Large language models (LLMs) encode a vast amount of semantic knowledge and possess remarkable understanding and reasoning capabilities. Previous work has explored how to ground LLMs in robotic tasks to generate feasible and executable textual plans. However, low-level execution in the physical world may deviate from the high-level textual plan due to environmental perturbations or imperfect controller design. In this paper, we propose \textbf{DoReMi}, a novel language model grounding framework that enables immediate Detection and Recovery from Misalignments between plan and execution. Specifically, we leverage LLMs to play a dual role, aiding not only in high-level planning but also generating constraints that can indicate misalignment during execution. Then vision language models (VLMs) are utilized to detect constraint violations continuously. Our pipeline can monitor the low-level execution and enable timely recovery if certain plan-execution misalignment occurs. Experiments on various complex tasks including robot arms and humanoid robots demonstrate that our method can lead to higher task success rates and shorter task completion times. Videos of DoReMi are available at \url{https://sites.google.com/view/doremi-paper}.


Decentralized Motor Skill Learning for Complex Robotic Systems

arXiv.org Artificial Intelligence

Reinforcement learning (RL) has achieved remarkable success in complex robotic systems (eg. quadruped locomotion). In previous works, the RL-based controller was typically implemented as a single neural network with concatenated observation input. However, the corresponding learned policy is highly task-specific. Since all motors are controlled in a centralized way, out-of-distribution local observations can impact global motors through the single coupled neural network policy. In contrast, animals and humans can control their limbs separately. Inspired by this biological phenomenon, we propose a Decentralized motor skill (DEMOS) learning algorithm to automatically discover motor groups that can be decoupled from each other while preserving essential connections and then learn a decentralized motor control policy. Our method improves the robustness and generalization of the policy without sacrificing performance. Experiments on quadruped and humanoid robots demonstrate that the learned policy is robust against local motor malfunctions and can be transferred to new tasks.