Jiang, Yuqi
SEM-CLIP: Precise Few-Shot Learning for Nanoscale Defect Detection in Scanning Electron Microscope Image
Jin, Qian, Jiang, Yuqi, Lu, Xudong, Liu, Yumeng, Chen, Yining, Gao, Dawei, Sun, Qi, Zhuo, Cheng
In the field of integrated circuit manufacturing, the detection and classification of nanoscale wafer defects are critical for subsequent root cause analysis and yield enhancement. The complex background patterns observed in scanning electron microscope (SEM) images and the diverse textures of the defects pose significant challenges. Traditional methods usually suffer from insufficient data, labels, and poor transferability. In this paper, we propose a novel few-shot learning approach, SEM-CLIP, for accurate defect classification and segmentation. SEM-CLIP customizes the Contrastive Language-Image Pretraining (CLIP) model to better focus on defect areas and minimize background distractions, thereby enhancing segmentation accuracy. We employ text prompts enriched with domain knowledge as prior information to assist in precise analysis. Additionally, our approach incorporates feature engineering with textual guidance to categorize defects more effectively. SEM-CLIP requires little annotated data, substantially reducing labor demands in the semiconductor industry. Extensive experimental validation demonstrates that our model achieves impressive classification and segmentation results under few-shot learning scenarios.
FabGPT: An Efficient Large Multimodal Model for Complex Wafer Defect Knowledge Queries
Jiang, Yuqi, Lu, Xudong, Jin, Qian, Sun, Qi, Wu, Hanming, Zhuo, Cheng
Intelligence is key to advancing integrated circuit (IC) fabrication. Recent breakthroughs in Large Multimodal Models (LMMs) have unlocked unparalleled abilities in understanding images and text, fostering intelligent fabrication. Leveraging the power of LMMs, we introduce FabGPT, a customized IC fabrication large multimodal model for wafer defect knowledge query. FabGPT manifests expertise in conducting defect detection in Scanning Electron Microscope (SEM) images, performing root cause analysis, and providing expert question-answering (Q&A) on fabrication processes. FabGPT matches enhanced multimodal features to automatically detect minute defects under complex wafer backgrounds and reduce the subjectivity of manual threshold settings. Besides, the proposed modulation module and interactive corpus training strategy embed wafer defect knowledge into the pre-trained model, effectively balancing Q&A queries related to defect knowledge and original knowledge and mitigating the modality bias issues. Experiments on in-house fab data (SEM-WaD) show that our FabGPT achieves significant performance improvement in wafer defect detection and knowledge querying.
Tiny-PPG: A Lightweight Deep Neural Network for Real-Time Detection of Motion Artifacts in Photoplethysmogram Signals on Edge Devices
Zheng, Yali, Wu, Chen, Cai, Peizheng, Zhong, Zhiqiang, Huang, Hongda, Jiang, Yuqi
Photoplethysmogram (PPG) signals are easily contaminated by motion artifacts in real-world settings, despite their widespread use in Internet-of-Things (IoT) based wearable and smart health devices for cardiovascular health monitoring. This study proposed a lightweight deep neural network, called Tiny-PPG, for accurate and real-time PPG artifact segmentation on IoT edge devices. The model was trained and tested on a public dataset, PPG DaLiA, which featured complex artifacts with diverse lengths and morphologies during various daily activities of 15 subjects using a watch-type device (Empatica E4). The model structure, training method and loss function were specifically designed to balance detection accuracy and speed for real-time PPG artifact detection in resource-constrained embedded devices. To optimize the model size and capability in multi-scale feature representation, the model employed depth-wise separable convolution and atrous spatial pyramid pooling modules, respectively. Additionally, the contrastive loss was also utilized to further optimize the feature embeddings. With additional model pruning, Tiny-PPG achieved state-of-the-art detection accuracy of 87.4% while only having 19,726 model parameters (0.15 megabytes), and was successfully deployed on an STM32 embedded system for real-time PPG artifact detection. Therefore, this study provides an effective solution for resource-constraint IoT smart health devices in PPG artifact detection.