Goto

Collaborating Authors

 Jiang, Yuncheng


Privacy-Preserving Federated Foundation Model for Generalist Ultrasound Artificial Intelligence

arXiv.org Artificial Intelligence

Ultrasound imaging is widely used in clinical diagnosis due to its non-invasive nature and real-time capabilities. However, conventional ultrasound diagnostics face several limitations, including high dependence on physician expertise and suboptimal image quality, which complicates interpretation and increases the likelihood of diagnostic errors. Artificial intelligence (AI) has emerged as a promising solution to enhance clinical diagnosis, particularly in detecting abnormalities across various biomedical imaging modalities. Nonetheless, current AI models for ultrasound imaging face critical challenges. First, these models often require large volumes of labeled medical data, raising concerns over patient privacy breaches. Second, most existing models are task-specific, which restricts their broader clinical utility. To overcome these challenges, we present UltraFedFM, an innovative privacy-preserving ultrasound foundation model. UltraFedFM is collaboratively pre-trained using federated learning across 16 distributed medical institutions in 9 countries, leveraging a dataset of over 1 million ultrasound images covering 19 organs and 10 ultrasound modalities. This extensive and diverse data, combined with a secure training framework, enables UltraFedFM to exhibit strong generalization and diagnostic capabilities. It achieves an average area under the receiver operating characteristic curve of 0.927 for disease diagnosis and a dice similarity coefficient of 0.878 for lesion segmentation. Notably, UltraFedFM surpasses the diagnostic accuracy of mid-level ultrasonographers and matches the performance of expert-level sonographers in the joint diagnosis of 8 common systemic diseases. These findings indicate that UltraFedFM can significantly enhance clinical diagnostics while safeguarding patient privacy, marking an advancement in AI-driven ultrasound imaging for future clinical applications.


A Simplifying and Learnable Graph Convolutional Attention Network for Unsupervised Knowledge Graphs Alignment

arXiv.org Artificial Intelligence

The success of current Entity Alignment (EA) task depends largely on the supervision information provided by labeled data. Considering the cost of labeled data, most supervised methods are difficult to apply in practical scenarios. Therefore, more and more works based on contrastive learning, active learning or other deep learning techniques have been developed, to solve the performance bottleneck caused by the lack of labeled data. However, the existing unsupervised EA methods still have some limitations, either their modeling complexity is high or they cannot balance the effectiveness and practicality of alignment. To overcome these issues, we propose a Simplifying and Learnable graph convolutional attention network for Unsupervised Knowledge Graphs alignment method (SLU). Specifically, we first introduce LCAT, a new and simple framework as the backbone network to model the graph structure of two KGs. Then we design a reconstruction method of relation structure based on potential matching relations for efficiently filtering invalid neighborhood information of aligned entities, to improve the usability and scalability of SLU. Impressively, a similarity function based on consistency is proposed to better measure the similarity of candidate entity pairs. Finally, we conduct extensive experiments on three datasets of different sizes (15K and 100K) and different types (cross-lingual and monolingual) to verify the superiority of SLU. Experimental results show that SLU significantly improves alignment accuracy, outperforming 25 supervised or unsupervised methods, and improving 6.4% in Hits@1 over the best baseline in the best case.


OCEAN: An Openspace Collision-free Trajectory Planner for Autonomous Parking Based on ADMM

arXiv.org Artificial Intelligence

In this paper, we propose an Openspace Collision-freE trAjectory plaNner (OCEAN) for autonomous parking. OCEAN is an optimization-based trajectory planner accelerated by Alternating Direction Method of Multiplier (ADMM) with enhanced computational efficiency and robustness, and is suitable for all scenes with few dynamic obstacles. Starting from a hierarchical optimization-based collision avoidance framework, the trajectory planning problem is first warm-started by a collision-free Hybrid A* trajectory, then the collision avoidance trajectory planning problem is reformulated as a smooth and convex dual form, and solved by ADMM in parallel. The optimization variables are carefully split into several groups so that ADMM sub-problems are formulated as Quadratic Programming (QP), Sequential Quadratic Programming (SQP),and Second Order Cone Programming (SOCP) problems that can be efficiently and robustly solved. We validate our method both in hundreds of simulation scenarios and hundreds of hours of public parking areas. The results show that the proposed method has better system performance compared with other benchmarks.


Hierarchical Weight Averaging for Deep Neural Networks

arXiv.org Artificial Intelligence

Despite the simplicity, stochastic gradient descent (SGD)-like algorithms are successful in training deep neural networks (DNNs). Among various attempts to improve SGD, weight averaging (WA), which averages the weights of multiple models, has recently received much attention in the literature. Broadly, WA falls into two categories: 1) online WA, which averages the weights of multiple models trained in parallel, is designed for reducing the gradient communication overhead of parallel mini-batch SGD, and 2) offline WA, which averages the weights of one model at different checkpoints, is typically used to improve the generalization ability of DNNs. Though online and offline WA are similar in form, they are seldom associated with each other. Besides, these methods typically perform either offline parameter averaging or online parameter averaging, but not both. In this work, we firstly attempt to incorporate online and offline WA into a general training framework termed Hierarchical Weight Averaging (HWA). By leveraging both the online and offline averaging manners, HWA is able to achieve both faster convergence speed and superior generalization performance without any fancy learning rate adjustment. Besides, we also analyze the issues faced by existing WA methods, and how our HWA address them, empirically. Finally, extensive experiments verify that HWA outperforms the state-of-the-art methods significantly.


Entity Alignment with Reliable Path Reasoning and Relation-Aware Heterogeneous Graph Transformer

arXiv.org Artificial Intelligence

Entity Alignment (EA) has attracted widespread attention in both academia and industry, which aims to seek entities with same meanings from different Knowledge Graphs (KGs). There are substantial multi-step relation paths between entities in KGs, indicating the semantic relations of entities. However, existing methods rarely consider path information because not all natural paths facilitate for EA judgment. In this paper, we propose a more effective entity alignment framework, RPR-RHGT, which integrates relation and path structure information, as well as the heterogeneous information in KGs. Impressively, an initial reliable path reasoning algorithm is developed to generate the paths favorable for EA task from the relation structures of KGs, which is the first algorithm in the literature to successfully use unrestricted path information. In addition, to efficiently capture heterogeneous features in entity neighborhoods, a relation-aware heterogeneous graph transformer is designed to model the relation and path structures of KGs. Extensive experiments on three well-known datasets show RPR-RHGT significantly outperforms 11 state-of-the-art methods, exceeding the best performing baseline up to 8.62% on Hits@1. We also show its better performance than the baselines on different ratios of training set, and harder datasets.


Expected Utility with Relative Loss Reduction: A Unifying Decision Model for Resolving Four Well-Known Paradoxes

AAAI Conferences

Some well-known paradoxes in decision making (e.g., the Allais paradox, the St. Peterburg paradox, the Ellsberg paradox, and the Machina paradox) reveal that choices conventional expected utility theory predicts could be inconsistent with empirical observations. So, solutions to these paradoxes can help us better understand humans decision making accurately. This is also highly related to the prediction power of a decision-making model in real-world applications. Thus, various models have been proposed to address these paradoxes. However, most of them can only solve parts of the paradoxes, and for doing so some of them have to rely on the parameter tuning without proper justifications for such bounds of parameters. To this end, this paper proposes a new descriptive decision-making model, expected utility with relative loss reduction, which can exhibit the same qualitative behaviours as those observed in experiments of these paradoxes without any additional parameter setting. In particular, we introduce the concept of relative loss reduction to reflect people's tendency to prefer ensuring a sufficient minimum loss to just a maximum expected utility in decision-making under risk or ambiguity.


An Ambiguity Aversion Model for Decision Making under Ambiguity

AAAI Conferences

In real life, decisions are often made under ambiguity, where it is difficult to estimate accurately the probability of each single possible consequence of a choice. However, this problem has not been solved well in existing work for the following two reasons. (i) Some of them cannot cover the Ellsberg paradox and the Machina Paradox. Thus, the choices that they predict could be inconsistent with empirical observations. (ii) Some of them rely on parameter tuning without offering explanations for the reasonability of setting such bounds of parameters. Thus, the prediction of such a model in new decision making problems is doubtful. To the end, this paper proposes a new decision making model based on D-S theory and the emotion of ambiguity aversion. Some insightful properties of our model and the validating on two famous paradoxes show that our model indeed is a better alternative for decision making under ambiguity.