Jiang, Yuming
Vchitect-2.0: Parallel Transformer for Scaling Up Video Diffusion Models
Fan, Weichen, Si, Chenyang, Song, Junhao, Yang, Zhenyu, He, Yinan, Zhuo, Long, Huang, Ziqi, Dong, Ziyue, He, Jingwen, Pan, Dongwei, Wang, Yi, Jiang, Yuming, Wang, Yaohui, Gao, Peng, Chen, Xinyuan, Li, Hengjie, Lin, Dahua, Qiao, Yu, Liu, Ziwei
We present Vchitect-2.0, a parallel transformer architecture designed to scale up video diffusion models for large-scale text-to-video generation. The overall Vchitect-2.0 system has several key designs. (1) By introducing a novel Multimodal Diffusion Block, our approach achieves consistent alignment between text descriptions and generated video frames, while maintaining temporal coherence across sequences. (2) To overcome memory and computational bottlenecks, we propose a Memory-efficient Training framework that incorporates hybrid parallelism and other memory reduction techniques, enabling efficient training of long video sequences on distributed systems. (3) Additionally, our enhanced data processing pipeline ensures the creation of Vchitect T2V DataVerse, a high-quality million-scale training dataset through rigorous annotation and aesthetic evaluation. Extensive benchmarking demonstrates that Vchitect-2.0 outperforms existing methods in video quality, training efficiency, and scalability, serving as a suitable base for high-fidelity video generation.
Aligning Knowledge Concepts to Whole Slide Images for Precise Histopathology Image Analysis
Zhao, Weiqin, Guo, Ziyu, Fan, Yinshuang, Jiang, Yuming, Yeung, Maximus, Yu, Lequan
Due to the large size and lack of fine-grained annotation, Whole Slide Images (WSIs) analysis is commonly approached as a Multiple Instance Learning (MIL) problem. However, previous studies only learn from training data, posing a stark contrast to how human clinicians teach each other and reason about histopathologic entities and factors. Here we present a novel knowledge concept-based MIL framework, named ConcepPath to fill this gap. Specifically, ConcepPath utilizes GPT-4 to induce reliable diseasespecific human expert concepts from medical literature, and incorporate them with a group of purely learnable concepts to extract complementary knowledge from training data. In ConcepPath, WSIs are aligned to these linguistic knowledge concepts by utilizing pathology vision-language model as the basic building component. In the application of lung cancer subtyping, breast cancer HER2 scoring, and gastric cancer immunotherapy-sensitive subtyping task, ConcepPath significantly outperformed previous SOTA methods which lack the guidance of human expert knowledge.
Chain of Ideas: Revolutionizing Research Via Novel Idea Development with LLM Agents
Li, Long, Xu, Weiwen, Guo, Jiayan, Zhao, Ruochen, Li, Xingxuan, Yuan, Yuqian, Zhang, Boqiang, Jiang, Yuming, Xin, Yifei, Dang, Ronghao, Zhao, Deli, Rong, Yu, Feng, Tian, Bing, Lidong
Effective research ideation is a critical step for scientific research. However, the exponential increase in scientific literature makes it challenging for researchers to stay current with recent advances and identify meaningful research directions. Recent developments in large language models~(LLMs) suggest a promising avenue for automating the generation of novel research ideas. However, existing methods for idea generation either trivially prompt LLMs or directly expose LLMs to extensive literature without indicating useful information. Inspired by the research process of human researchers, we propose a Chain-of-Ideas~(CoI) agent, an LLM-based agent that organizes relevant literature in a chain structure to effectively mirror the progressive development in a research domain. This organization facilitates LLMs to capture the current advancements in research, thereby enhancing their ideation capabilities. Furthermore, we propose Idea Arena, an evaluation protocol that can comprehensively evaluate idea generation methods from different perspectives, aligning closely with the preferences of human researchers. Experimental results indicate that the CoI agent consistently outperforms other methods and shows comparable quality as humans in research idea generation. Moreover, our CoI agent is budget-friendly, with a minimum cost of \$0.50 to generate a candidate idea and its corresponding experimental design.
UnitedHuman: Harnessing Multi-Source Data for High-Resolution Human Generation
Fu, Jianglin, Li, Shikai, Jiang, Yuming, Lin, Kwan-Yee, Wu, Wayne, Liu, Ziwei
Human generation has achieved significant progress. Nonetheless, existing methods still struggle to synthesize specific regions such as faces and hands. We argue that the main reason is rooted in the training data. A holistic human dataset inevitably has insufficient and low-resolution information on local parts. Therefore, we propose to use multi-source datasets with various resolution images to jointly learn a high-resolution human generative model. However, multi-source data inherently a) contains different parts that do not spatially align into a coherent human, and b) comes with different scales. To tackle these challenges, we propose an end-to-end framework, UnitedHuman, that empowers continuous GAN with the ability to effectively utilize multi-source data for high-resolution human generation. Specifically, 1) we design a Multi-Source Spatial Transformer that spatially aligns multi-source images to full-body space with a human parametric model. 2) Next, a continuous GAN is proposed with global-structural guidance and CutMix consistency. Patches from different datasets are then sampled and transformed to supervise the training of this scale-invariant generative model. Extensive experiments demonstrate that our model jointly learned from multi-source data achieves superior quality than those learned from a holistic dataset.
A Hybrid Deep Feature-Based Deformable Image Registration Method for Pathology Images
Zhang, Chulong, Jiang, Yuming, Li, Na, Zhang, Zhicheng, Islam, Md Tauhidul, Dai, Jingjing, Liu, Lin, He, Wenfeng, Qin, Wenjian, Xiong, Jing, Xie, Yaoqin, Liang, Xiaokun
Pathologists need to combine information from differently stained pathology slices for accurate diagnosis. Deformable image registration is a necessary technique for fusing multi-modal pathology slices. This paper proposes a hybrid deep feature-based deformable image registration framework for stained pathology samples. We first extract dense feature points via the detector-based and detector-free deep learning feature networks and perform points matching. Then, to further reduce false matches, an outlier detection method combining the isolation forest statistical model and the local affine correction model is proposed. Finally, the interpolation method generates the deformable vector field for pathology image registration based on the above matching points. We evaluate our method on the dataset of the Non-rigid Histology Image Registration (ANHIR) challenge, which is co-organized with the IEEE ISBI 2019 conference. Our technique outperforms the traditional approaches by 17% with the Average-Average registration target error (rTRE) reaching 0.0034. The proposed method achieved state-of-the-art performance and ranked 1st in evaluating the test dataset. The proposed hybrid deep feature-based registration method can potentially become a reliable method for pathology image registration.