Goto

Collaborating Authors

 Jiang, Yaoting


Optimized CNNs for Rapid 3D Point Cloud Object Recognition

arXiv.org Artificial Intelligence

This study introduces a method for efficiently detecting objects within 3D point clouds using convolutional neural networks (CNNs). Our approach adopts a unique feature-centric voting mechanism to construct convolutional layers that capitalize on the typical sparsity observed in input data. We explore the trade-off between accuracy and speed across diverse network architectures and advocate for integrating an $\mathcal{L}_1$ penalty on filter activations to augment sparsity within intermediate layers. This research pioneers the proposal of sparse convolutional layers combined with $\mathcal{L}_1$ regularization to effectively handle large-scale 3D data processing. Our method's efficacy is demonstrated on the MVTec 3D-AD object detection benchmark. The Vote3Deep models, with just three layers, outperform the previous state-of-the-art in both laser-only approaches and combined laser-vision methods. Additionally, they maintain competitive processing speeds. This underscores our approach's capability to substantially enhance detection performance while ensuring computational efficiency suitable for real-time applications.


Transforming Multidimensional Time Series into Interpretable Event Sequences for Advanced Data Mining

arXiv.org Artificial Intelligence

This paper introduces a novel spatiotemporal feature representation model designed to address the limitations of traditional methods in multidimensional time series (MTS) analysis. The proposed approach converts MTS into one-dimensional sequences of spatially evolving events, preserving the complex coupling relationships between dimensions. By employing a variable-length tuple mining method, key spatiotemporal features are extracted, enhancing the interpretability and accuracy of time series analysis. Unlike conventional models, this unsupervised method does not rely on large training datasets, making it adaptable across different domains. Experimental results from motion sequence classification validate the model's superior performance in capturing intricate patterns within the data. The proposed framework has significant potential for applications across various fields, including backend services for monitoring and optimizing IT infrastructure, medical diagnosis through continuous patient monitoring and health trend analysis, and internet businesses for tracking user behavior and forecasting sales. This work offers a new theoretical foundation and technical support for advancing time series data mining and its practical applications in human behavior recognition and other domains.