Goto

Collaborating Authors

 Jiang, Yao


Enhancing Regrasping Efficiency Using Prior Grasping Perceptions with Soft Fingertips

arXiv.org Artificial Intelligence

Grasping the same object in different postures is often necessary, especially when handling tools or stacked items. Due to unknown object properties and changes in grasping posture, the required grasping force is uncertain and variable. Traditional methods rely on real-time feedback to control the grasping force cautiously, aiming to prevent slipping or damage. However, they overlook reusable information from the initial grasp, treating subsequent regrasping attempts as if they were the first, which significantly reduces efficiency. To improve this, we propose a method that utilizes perception from prior grasping attempts to predict the required grasping force, even with changes in position. We also introduce a calculation method that accounts for fingertip softness and object asymmetry. Theoretical analyses demonstrate the feasibility of predicting grasping forces across various postures after a single grasp. Experimental verifications attest to the accuracy and adaptability of our prediction method. Furthermore, results show that incorporating the predicted grasping force into feedback-based approaches significantly enhances grasping efficiency across a range of everyday objects.


Enhancing Adaptivity of Two-Fingered Object Reorientation Using Tactile-based Online Optimization of Deconstructed Actions

arXiv.org Artificial Intelligence

Object reorientation is a critical task for robotic grippers, especially when manipulating objects within constrained environments. The task poses significant challenges for motion planning due to the high-dimensional output actions with the complex input information, including unknown object properties and nonlinear contact forces. Traditional approaches simplify the problem by reducing degrees of freedom, limiting contact forms, or acquiring environment/object information in advance, which significantly compromises adaptability. To address these challenges, we deconstruct the complex output actions into three fundamental types based on tactile sensing: task-oriented actions, constraint-oriented actions, and coordinating actions. These actions are then optimized online using gradient optimization to enhance adaptability. Key contributions include simplifying contact state perception, decomposing complex gripper actions, and enabling online action optimization for handling unknown objects or environmental constraints. Experimental results demonstrate that the proposed method is effective across a range of everyday objects, regardless of environmental contact. Additionally, the method exhibits robust performance even in the presence of unknown contacts and nonlinear external disturbances.


Modeling, Simulation, and Application of Spatio-Temporal Characteristics Detection in Incipient Slip

arXiv.org Artificial Intelligence

--Incipient slip detection provides critical feedback for robotic grasping and manipulation tasks. However, maintaining its adaptability under diverse object properties and complex working conditions remains challenging. This article highlights the importance of completely representing spatiotemporal features of slip, and proposes a novel approach for incipient slip modeling and detection. Based on the analysis of localized displacement phenomenon, we establish the relationship between the characteristic strain rate extreme events and the local slip state. This approach enables the detection of both the spatial distribution and temporal dynamics of stick -slip regions. Also, the proposed method can be applied to strain distribution sensing devices, such as vis ion-based tactile sensors. Simulations and prototype experiments validated the effectiveness of this approach under varying contact conditions, including different contact geometries, friction coefficients, and combined loads. Experiments demonstrated that this method not only accurately and reliably delineates incipient slip, but also facilitates friction parameter estimation and adaptive grasping control. INTRODUCTION ACTILE perception plays a crucial role in stable grasping and dexterous manipulation in humans [1]. Neuroscientific studies show that humans can identify the frictional parameters of objects they touch with over 90% accuracy [2], and quickly adjust the grasp force within about 200 milliseconds to prevent slipping [3]. This ability enables humans to adapt to changes in friction levels based on tactile feedback and apply proper force to ensure s tability while maintaining gentle grasping [4]. The perception of incipient slip is an effective means for friction parameter recognition and grasp force control [5],[6]. Incipient slip is an intermediate state between complete sticking and full slipping of the contact surface, as shown in Figure 1. When a tangential load is applied to the contact surface, slip first occurs at the contact edge. It gradually spreads inward, eventually covering the entire stick region [7]. This work was supported by the National Natural Science Foundation of China under Grant 52375017. We refer to these two characteristics of incipient slip as spatial and temporal characteristics: spatial characteristics refer to the distribution of the stick -slip reg ion at a given moment, while temporal characteristics describe the time evolution of local slip. These characteristics are widely present in human tactile perception. According to existing research, Human sensory information is encoded by neural populations to capture spatial distribution, rather than being transmitted by individual neurons. Besides, skin deformation can be influenced by the loading history [9].


An Adaptive Grasping Force Tracking Strategy for Nonlinear and Time-Varying Object Behaviors

arXiv.org Artificial Intelligence

Accurate grasp force control is one of the key skills for ensuring successful and damage-free robotic grasping of objects. Although existing methods have conducted in-depth research on slip detection and grasping force planning, they often overlook the issue of adaptive tracking of the actual force to the target force when handling objects with different material properties. The optimal parameters of a force tracking controller are significantly influenced by the object's stiffness, and many adaptive force tracking algorithms rely on stiffness estimation. However, real-world objects often exhibit viscous, plastic, or other more complex nonlinear time-varying behaviors, and existing studies provide insufficient support for these materials in terms of stiffness definition and estimation. To address this, this paper introduces the concept of generalized stiffness, extending the definition of stiffness to nonlinear time-varying grasp system models, and proposes an online generalized stiffness estimator based on Long Short-Term Memory (LSTM) networks. Based on generalized stiffness, this paper proposes an adaptive parameter adjustment strategy using a PI controller as an example, enabling dynamic force tracking for objects with varying characteristics. Experimental results demonstrate that the proposed method achieves high precision and short probing time, while showing better adaptability to non-ideal objects compared to existing methods. The method effectively solves the problem of grasp force tracking in unknown, nonlinear, and time-varying grasp systems, enhancing the robotic grasping ability in unstructured environments.


Effectiveness Assessment of Recent Large Vision-Language Models

arXiv.org Artificial Intelligence

The advent of large vision-language models (LVLMs) represents a remarkable advance in the quest for artificial general intelligence. However, the model's effectiveness in both specialized and general tasks warrants further investigation. This paper endeavors to evaluate the competency of popular LVLMs in specialized and general tasks, respectively, aiming to offer a comprehensive understanding of these novel models. To gauge their effectiveness in specialized tasks, we employ six challenging tasks in three different application scenarios: natural, healthcare, and industrial. These six tasks include salient/camouflaged/transparent object detection, as well as polyp detection, skin lesion detection, and industrial anomaly detection. We examine the performance of three recent open-source LVLMs, including MiniGPT-v2, LLaVA-1.5, and Shikra, on both visual recognition and localization in these tasks. Moreover, we conduct empirical investigations utilizing the aforementioned LVLMs together with GPT-4V, assessing their multi-modal understanding capabilities in general tasks including object counting, absurd question answering, affordance reasoning, attribute recognition, and spatial relation reasoning. Our investigations reveal that these LVLMs demonstrate limited proficiency not only in specialized tasks but also in general tasks. We delve deep into this inadequacy and uncover several potential factors, including limited cognition in specialized tasks, object hallucination, text-to-image interference, and decreased robustness in complex problems. We hope that this study can provide useful insights for the future development of LVLMs, helping researchers improve LVLMs for both general and specialized applications.


EasyCalib: Simple and Low-Cost In-Situ Calibration for Force Reconstruction with Vision-Based Tactile Sensors

arXiv.org Artificial Intelligence

For elastomer-based tactile sensors, represented by visuotactile sensors, routine calibration of mechanical parameters (Young's modulus and Poisson's ratio) has been shown to be important for force reconstruction. However, the reliance on existing in-situ calibration methods for accurate force measurements limits their cost-effective and flexible applications. This article proposes a new in-situ calibration scheme that relies only on comparing contact deformation. Based on the detailed derivations of the normal contact and torsional contact theories, we designed a simple and low-cost calibration device, EasyCalib, and validated its effectiveness through extensive finite element analysis. We also explored the accuracy of EasyCalib in the practical application and demonstrated that accurate contact distributed force reconstruction can be realized based on the mechanical parameters obtained. EasyCalib balances low hardware cost, ease of operation, and low dependence on technical expertise and is expected to provide the necessary accuracy guarantees for wide applications of visuotactile sensors in the wild.


Incipient Slip-Based Rotation Measurement via Visuotactile Sensing During In-Hand Object Pivoting

arXiv.org Artificial Intelligence

In typical in-hand manipulation tasks represented by object pivoting, the real-time perception of rotational slippage has been proven beneficial for improving the dexterity and stability of robotic hands. An effective strategy is to obtain the contact properties for measuring rotation angle through visuotactile sensing. However, existing methods for rotation estimation did not consider the impact of the incipient slip during the pivoting process, which introduces measurement errors and makes it hard to determine the boundary between stable contact and macro slip. This paper describes a generalized 2-d contact model under pivoting, and proposes a rotation measurement method based on the line-features in the stick region. The proposed method was applied to the Tac3D vision-based tactile sensors using continuous marker patterns. Experiments show that the rotation measurement system could achieve an average static measurement error of 0.17 degree and an average dynamic measurement error of 1.34 degree. Besides, the proposed method requires no training data and can achieve real-time sensing during the in-hand object pivoting.


Real-time and Robust Feature Detection of Continuous Marker Pattern for Dense 3-D Deformation Measurement

arXiv.org Artificial Intelligence

Visuotactile sensing technology has received much attention in recent years. This article proposes a feature detection method applicable to visuotactile sensors based on continuous marker patterns (CMP) to measure 3-d deformation. First, we construct the feature model of checkerboard-like corners under contact deformation, and design a novel double-layer circular sampler. Then, we propose the judging criteria and response function of corner features by analyzing sampling signals' amplitude-frequency characteristics and circular cross-correlation behavior. The proposed feature detection algorithm fully considers the boundary characteristics retained by the corners with geometric distortion, thus enabling reliable detection at a low calculation cost. The experimental results show that the proposed method has significant advantages in terms of real-time and robustness. Finally, we have achieved the high-density 3-d contact deformation visualization based on this detection method. This technique is able to clearly record the process of contact deformation, thus enabling inverse sensing of dynamic contact processes.