Jiang, Xueying
Exploring 3D Activity Reasoning and Planning: From Implicit Human Intentions to Route-Aware Planning
Jiang, Xueying, Li, Wenhao, Zhang, Xiaoqin, Shao, Ling, Lu, Shijian
3D activity reasoning and planning has attracted increasing attention in human-robot interaction and embodied AI thanks to the recent advance in multimodal learning. However, most existing works share two constraints: 1) heavy reliance on explicit instructions with little reasoning on implicit user intention; 2) negligence of inter-step route planning on robot moves. To bridge the gaps, we propose 3D activity reasoning and planning, a novel 3D task that reasons the intended activities from implicit instructions and decomposes them into steps with inter-step routes and planning under the guidance of fine-grained 3D object shapes and locations from scene segmentation. We tackle the new 3D task from two perspectives. First, we construct ReasonPlan3D, a large-scale benchmark that covers diverse 3D scenes with rich implicit instructions and detailed annotations for multi-step task planning, inter-step route planning, and fine-grained segmentation. Second, we design a novel framework that introduces progressive plan generation with contextual consistency across multiple steps, as well as a scene graph that is updated dynamically for capturing critical objects and their spatial relations. Extensive experiments demonstrate the effectiveness of our benchmark and framework in reasoning activities from implicit human instructions, producing accurate stepwise task plans, and seamlessly integrating route planning for multi-step moves. The dataset and code will be released.
Domain Generalization via Balancing Training Difficulty and Model Capability
Jiang, Xueying, Huang, Jiaxing, Jin, Sheng, Lu, Shijian
Domain generalization (DG) aims to learn domain-generalizable models from one or multiple source domains that can perform well in unseen target domains. Despite its recent progress, most existing work suffers from the misalignment between the difficulty level of training samples and the capability of contemporarily trained models, leading to over-fitting or under-fitting in the trained generalization model. We design MoDify, a Momentum Difficulty framework that tackles the misalignment by balancing the seesaw between the model's capability and the samples' difficulties along the training process. MoDify consists of two novel designs that collaborate to fight against the misalignment while learning domain-generalizable models. The first is MoDify-based Data Augmentation which exploits an RGB Shuffle technique to generate difficulty-aware training samples on the fly. The second is MoDify-based Network Optimization which dynamically schedules the training samples for balanced and smooth learning with appropriate difficulty. Without bells and whistles, a simple implementation of MoDify achieves superior performance across multiple benchmarks. In addition, MoDify can complement existing methods as a plug-in, and it is generic and can work for different visual recognition tasks.