Goto

Collaborating Authors

 Jiang, Xiaowei


Interpretable Dual-Filter Fuzzy Neural Networks for Affective Brain-Computer Interfaces

arXiv.org Artificial Intelligence

Fuzzy logic provides a robust framework for enhancing explainability, particularly in domains requiring the interpretation of complex and ambiguous signals, such as brain-computer interface (BCI) systems. Despite significant advances in deep learning, interpreting human emotions remains a formidable challenge. In this work, we present iFuzzyAffectDuo, a novel computational model that integrates a dual-filter fuzzy neural network architecture for improved detection and interpretation of emotional states from neuroimaging data. The model introduces a new membership function (MF) based on the Laplace distribution, achieving superior accuracy and interpretability compared to traditional approaches. By refining the extraction of neural signals associated with specific emotions, iFuzzyAffectDuo offers a human-understandable framework that unravels the underlying decision-making processes. We validate our approach across three neuroimaging datasets using functional Near-Infrared Spectroscopy (fNIRS) and Electroencephalography (EEG), demonstrating its potential to advance affective computing. These findings open new pathways for understanding the neural basis of emotions and their application in enhancing human-computer interaction.


Neural Spelling: A Spell-Based BCI System for Language Neural Decoding

arXiv.org Artificial Intelligence

Abstract--Brain-computer interfaces (BCIs) present a promising avenue by translating neural activity directly into text, eliminating the need for physical actions. However, existing noninvasive BCI systems have not successfully covered the entire alphabet, limiting their practicality. In this paper, we propose a novel non-invasive EEG-based BCI system with Curriculum-based Neural Spelling Framework, which recognizes all 26 alphabet letters by decoding neural signals associated with handwriting first, and then apply a Generative AI (GenAI) to enhance spellbased neural language decoding tasks. However, the invasive nature, high cost, and ethical concerns limit their I. RAIN-COMPUTER interfaces (BCIs) have emerged as a pivotal area of research within human-computer interaction accessible alternative. These systems are less obtrusive and (HCI), distinguished by their capacity to seamlessly more cost-effective, broadening potential user demographics [8]. Pioneering Despite the challenges of signal noise and the extensive training studies such as those by Guo et al.[1], Chen et al.[2], Cao et required for users, recent studies have demonstrated EEG's al.[3], and Lin et al.[4] underscore BCIs' role in advancing potential in effective language decoding [9, 10]. These interfaces create direct With the rise of Generative AI (GenAI), the integration of communication pathways that are especially beneficial for large language models (LLMs) into BCI research has opened individuals with limited speech or motor functions.


Contrastive Masked Autoencoders for Character-Level Open-Set Writer Identification

arXiv.org Artificial Intelligence

In the realm of digital forensics and document authentication, writer identification plays a crucial role in determining the authors of documents based on handwriting styles. The primary challenge in writer-id is the "open-set scenario", where the goal is accurately recognizing writers unseen during the model training. To overcome this challenge, representation learning is the key. This method can capture unique handwriting features, enabling it to recognize styles not previously encountered during training. Building on this concept, this paper introduces the Contrastive Masked Auto-Encoders (CMAE) for Character-level Open-Set Writer Identification. We merge Masked Auto-Encoders (MAE) with Contrastive Learning (CL) to simultaneously and respectively capture sequential information and distinguish diverse handwriting styles. Demonstrating its effectiveness, our model achieves state-of-the-art (SOTA) results on the CASIA online handwriting dataset, reaching an impressive precision rate of 89.7%. Our study advances universal writer-id with a sophisticated representation learning approach, contributing substantially to the ever-evolving landscape of digital handwriting analysis, and catering to the demands of an increasingly interconnected world.


iFuzzyTL: Interpretable Fuzzy Transfer Learning for SSVEP BCI System

arXiv.org Artificial Intelligence

The rapid evolution of Brain-Computer Interfaces (BCIs) has significantly influenced the domain of human-computer interaction, with Steady-State Visual Evoked Potentials (SSVEP) emerging as a notably robust paradigm. This study explores advanced classification techniques leveraging interpretable fuzzy transfer learning (iFuzzyTL) to enhance the adaptability and performance of SSVEP-based systems. Recent efforts have strengthened to reduce calibration requirements through innovative transfer learning approaches, which refine cross-subject generalizability and minimize calibration through strategic application of domain adaptation and few-shot learning strategies. Pioneering developments in deep learning also offer promising enhancements, facilitating robust domain adaptation and significantly improving system responsiveness and accuracy in SSVEP classification. However, these methods often require complex tuning and extensive data, limiting immediate applicability. iFuzzyTL introduces an adaptive framework that combines fuzzy logic principles with neural network architectures, focusing on efficient knowledge transfer and domain adaptation. iFuzzyTL refines input signal processing and classification in a human-interpretable format by integrating fuzzy inference systems and attention mechanisms. This approach bolsters the model's precision and aligns with real-world operational demands by effectively managing the inherent variability and uncertainty of EEG data. The model's efficacy is demonstrated across three datasets: 12JFPM (89.70% accuracy for 1s with an information transfer rate (ITR) of 149.58), Benchmark (85.81% accuracy for 1s with an ITR of 213.99), and eldBETA (76.50% accuracy for 1s with an ITR of 94.63), achieving state-of-the-art results and setting new benchmarks for SSVEP BCI performance.


E2H: A Two-Stage Non-Invasive Neural Signal Driven Humanoid Robotic Whole-Body Control Framework

arXiv.org Artificial Intelligence

Recent advancements in humanoid robotics, including the integration of hierarchical reinforcement learning-based control and the utilization of LLM planning, have significantly enhanced the ability of robots to perform complex tasks. In contrast to the highly developed humanoid robots, the human factors involved remain relatively unexplored. Directly controlling humanoid robots with the brain has already appeared in many science fiction novels, such as Pacific Rim and Gundam. In this work, we present E2H (EEG-to-Humanoid), an innovative framework that pioneers the control of humanoid robots using high-frequency non-invasive neural signals. As the none-invasive signal quality remains low in decoding precise spatial trajectory, we decompose the E2H framework in an innovative two-stage formation: 1) decoding neural signals (EEG) into semantic motion keywords, 2) utilizing LLM facilitated motion generation with a precise motion imitation control policy to realize humanoid robotics control. The method of directly driving robots with brainwave commands offers a novel approach to human-machine collaboration, especially in situations where verbal commands are impractical, such as in cases of speech impairments, space exploration, or underwater exploration, unlocking significant potential. E2H offers an exciting glimpse into the future, holding immense potential for human-computer interaction.


A Fuzzy-based Approach to Predict Human Interaction by Functional Near-Infrared Spectroscopy

arXiv.org Artificial Intelligence

The paper introduces a Fuzzy-based Attention (Fuzzy Attention Layer) mechanism, a novel computational approach to enhance the interpretability and efficacy of neural models in psychological research. The proposed Fuzzy Attention Layer mechanism is integrated as a neural network layer within the Transformer Encoder model to facilitate the analysis of complex psychological phenomena through neural signals, such as those captured by functional Near-Infrared Spectroscopy (fNIRS). By leveraging fuzzy logic, the Fuzzy Attention Layer is capable of learning and identifying interpretable patterns of neural activity. This capability addresses a significant challenge when using Transformer: the lack of transparency in determining which specific brain activities most contribute to particular predictions. Our experimental results demonstrated on fNIRS data from subjects engaged in social interactions involving handholding reveal that the Fuzzy Attention Layer not only learns interpretable patterns of neural activity but also enhances model performance. Additionally, the learned patterns provide deeper insights into the neural correlates of interpersonal touch and emotional exchange. The application of our model shows promising potential in deciphering the subtle complexities of human social behaviors, thereby contributing significantly to the fields of social neuroscience and psychological AI.