Goto

Collaborating Authors

 Jiang, Xiaolong


WorldSense: Evaluating Real-world Omnimodal Understanding for Multimodal LLMs

arXiv.org Artificial Intelligence

In this paper, we introduce WorldSense, the first benchmark to assess the multi-modal video understanding, that simultaneously encompasses visual, audio, and text inputs. In contrast to existing benchmarks, our WorldSense has several features: (i) collaboration of omni-modality, we design the evaluation tasks to feature a strong coupling of audio and video, requiring models to effectively utilize the synergistic perception of omni-modality; (ii) diversity of videos and tasks, WorldSense encompasses a diverse collection of 1,662 audio-visual synchronised videos, systematically categorized into 8 primary domains and 67 fine-grained subcategories to cover the broad scenarios, and 3,172 multi-choice QA pairs across 26 distinct tasks to enable the comprehensive evaluation; (iii) high-quality annotations, all the QA pairs are manually labeled by 80 expert annotators with multiple rounds of correction to ensure quality. Based on our WorldSense, we extensively evaluate various state-of-the-art models. The experimental results indicate that existing models face significant challenges in understanding real-world scenarios (48.0% best accuracy). We hope our WorldSense can provide a platform for evaluating the ability in constructing and understanding coherent contexts from omni-modality.


DynaPrompt: Dynamic Test-Time Prompt Tuning

arXiv.org Artificial Intelligence

Test-time prompt tuning enhances zero-shot generalization of vision-language models but tends to ignore the relatedness among test samples during inference. Online test-time prompt tuning provides a simple way to leverage the information in previous test samples, albeit with the risk of prompt collapse due to error accumulation. To enhance test-time prompt tuning, we propose DynaPrompt, short for dynamic test-time prompt tuning, exploiting relevant data distribution information while reducing error accumulation. Built on an online prompt buffer, DynaPrompt adaptively selects and optimizes the relevant prompts for each test sample during tuning. Specifically, we introduce a dynamic prompt selection strategy based on two metrics: prediction entropy and probability difference. For unseen test data information, we develop dynamic prompt appending, which allows the buffer to append new prompts and delete the inactive ones. By doing so, the prompts are optimized to exploit beneficial information on specific test data, while alleviating error accumulation. Experiments on fourteen datasets demonstrate the effectiveness of dynamic test-time prompt tuning. Despite achieving remarkable successes, foundation models such as Contrastive Language-Image Pretraining (CLIP) (Radford et al., 2021) still suffer from distribution shifts when adapting to downstream tasks (Zhou et al., 2022a;b; Xiao et al., 2024). To improve test-time adaptation of the model in the presence of distribution shifts, recent works introduce learnable prompts at test time. The methods freeze the CLIP model parameters while only tuning the learnable prompts for test data. As shown in Figure 1a, test-time prompt tuning (TPT) (Shu et al., 2022) adapts the prompt to each test sample individually, which is widely followed by recent works (Ma et al., 2023; Samadh et al., 2023; Yoon et al., 2024).


P4Q: Learning to Prompt for Quantization in Visual-language Models

arXiv.org Artificial Intelligence

Large-scale pre-trained Vision-Language Models (VLMs) have gained prominence in various visual and multimodal tasks, yet the deployment of VLMs on downstream application platforms remains challenging due to their prohibitive requirements of training samples and computing resources. Fine-tuning and quantization of VLMs can substantially reduce the sample and computation costs, which are in urgent need. There are two prevailing paradigms in quantization, Quantization-Aware Training (QAT) can effectively quantize large-scale VLMs but incur a huge training cost, while low-bit Post-Training Quantization (PTQ) suffers from a notable performance drop. We propose a method that balances fine-tuning and quantization named ``Prompt for Quantization'' (P4Q), in which we design a lightweight architecture to leverage contrastive loss supervision to enhance the recognition performance of a PTQ model. Our method can effectively reduce the gap between image features and text features caused by low-bit quantization, based on learnable prompts to reorganize textual representations and a low-bit adapter to realign the distributions of image and text features. We also introduce a distillation loss based on cosine similarity predictions to distill the quantized model using a full-precision teacher. Extensive experimental results demonstrate that our P4Q method outperforms prior arts, even achieving comparable results to its full-precision counterparts. For instance, our 8-bit P4Q can theoretically compress the CLIP-ViT/B-32 by 4 $\times$ while achieving 66.94\% Top-1 accuracy, outperforming the learnable prompt fine-tuned full-precision model by 2.24\% with negligible additional parameters on the ImageNet dataset.


Towards Open-Vocabulary Video Instance Segmentation

arXiv.org Artificial Intelligence

Video Instance Segmentation (VIS) aims at segmenting and categorizing objects in videos from a closed set of training categories, lacking the generalization ability to handle novel categories in real-world videos. To address this limitation, we make the following three contributions. First, we introduce the novel task of Open-Vocabulary Video Instance Segmentation, which aims to simultaneously segment, track, and classify objects in videos from open-set categories, including novel categories unseen during training. Second, to benchmark Open-Vocabulary VIS, we collect a Large-Vocabulary Video Instance Segmentation dataset (LV-VIS), that contains well-annotated objects from 1,196 diverse categories, significantly surpassing the category size of existing datasets by more than one order of magnitude. Third, we propose an efficient Memory-Induced Transformer architecture, OV2Seg, to first achieve Open-Vocabulary VIS in an end-to-end manner with near real-time inference speed. Extensive experiments on LV-VIS and four existing VIS datasets demonstrate the strong zero-shot generalization ability of OV2Seg on novel categories. The dataset and code are released here https://github.com/haochenheheda/LVVIS.