Goto

Collaborating Authors

 Jiang, Xianta


TextDoctor: Unified Document Image Inpainting via Patch Pyramid Diffusion Models

arXiv.org Artificial Intelligence

Digital versions of real-world text documents often suffer from issues like environmental corrosion of the original document, low-quality scanning, or human interference. Existing document restoration and inpainting methods typically struggle with generalizing to unseen document styles and handling high-resolution images. To address these challenges, we introduce TextDoctor, a novel unified document image inpainting method. Inspired by human reading behavior, TextDoctor restores fundamental text elements from patches and then applies diffusion models to entire document images instead of training models on specific document types. To handle varying text sizes and avoid out-of-memory issues, common in high-resolution documents, we propose using structure pyramid prediction and patch pyramid diffusion models. These techniques leverage multiscale inputs and pyramid patches to enhance the quality of inpainting both globally and locally. Extensive qualitative and quantitative experiments on seven public datasets validated that TextDoctor outperforms state-of-the-art methods in restoring various types of high-resolution document images.


High-Order Tensor Recovery with A Tensor $U_1$ Norm

arXiv.org Machine Learning

Recently, numerous tensor SVD (t-SVD)-based tensor recovery methods have emerged, showing promise in processing visual data. However, these methods often suffer from performance degradation when confronted with high-order tensor data exhibiting non-smooth changes, commonly observed in real-world scenarios but ignored by the traditional t-SVD-based methods. Our objective in this study is to provide an effective tensor recovery technique for handling non-smooth changes in tensor data and efficiently explore the correlations of high-order tensor data across its various dimensions without introducing numerous variables and weights. To this end, we introduce a new tensor decomposition and a new tensor norm called the Tensor $U_1$ norm. We utilize these novel techniques in solving the problem of high-order tensor completion problem and provide theoretical guarantees for the exact recovery of the resulting tensor completion models. An optimization algorithm is proposed to solve the resulting tensor completion model iteratively by combining the proximal algorithm with the Alternating Direction Method of Multipliers. Theoretical analysis showed the convergence of the algorithm to the Karush-Kuhn-Tucker (KKT) point of the optimization problem. Numerical experiments demonstrated the effectiveness of the proposed method in high-order tensor completion, especially for tensor data with non-smooth changes.


Synthetic Demographic Data Generation for Card Fraud Detection Using GANs

arXiv.org Artificial Intelligence

Using machine learning models to generate synthetic data has become common in many fields. Technology to generate synthetic transactions that can be used to detect fraud is also growing fast. Generally, this synthetic data contains only information about the transaction, such as the time, place, and amount of money. It does not usually contain the individual user's characteristics (age and gender are occasionally included). Using relatively complex synthetic demographic data may improve the complexity of transaction data features, thus improving the fraud detection performance. Benefiting from developments of machine learning, some deep learning models have potential to perform better than other well-established synthetic data generation methods, such as microsimulation. In this study, we built a deep-learning Generative Adversarial Network (GAN), called DGGAN, which will be used for demographic data generation. Our model generates samples during model training, which we found important to overcame class imbalance issues. This study can help improve the cognition of synthetic data and further explore the application of synthetic data generation in card fraud detection.


A Novel Tensor Factorization-Based Method with Robustness to Inaccurate Rank Estimation

arXiv.org Artificial Intelligence

This study aims to solve the over-reliance on the rank estimation strategy in the standard tensor factorization-based tensor recovery and the problem of a large computational cost in the standard t-SVD-based tensor recovery. To this end, we proposes a new tensor norm with a dual low-rank constraint, which utilizes the low-rank prior and rank information at the same time. In the proposed tensor norm, a series of surrogate functions of the tensor tubal rank can be used to achieve better performance in harness low-rankness within tensor data. It is proven theoretically that the resulting tensor completion model can effectively avoid performance degradation caused by inaccurate rank estimation. Meanwhile, attributed to the proposed dual low-rank constraint, the t-SVD of a smaller tensor instead of the original big one is computed by using a sample trick. Based on this, the total cost at each iteration of the optimization algorithm is reduced to $\mathcal{O}(n^3\log n +kn^3)$ from $\mathcal{O}(n^4)$ achieved with standard methods, where $k$ is the estimation of the true tensor rank and far less than $n$. Our method was evaluated on synthetic and real-world data, and it demonstrated superior performance and efficiency over several existing state-of-the-art tensor completion methods.


Diverse facial inpainting guided by exemplars

arXiv.org Artificial Intelligence

Facial image inpainting is a task of filling visually realistic and semantically meaningful contents for missing or masked pixels in a face image. Although existing methods have made significant progress in achieving high visual quality, the controllable diversity of facial image inpainting remains an open problem in this field. This paper introduces EXE-GAN, a novel diverse and interactive facial inpainting framework, which can not only preserve the high-quality visual effect of the whole image but also complete the face image with exemplar-like facial attributes. The proposed facial inpainting is achieved based on generative adversarial networks by leveraging the global style of input image, the stochastic style, and the exemplar style of exemplar image. A novel attribute similarity metric is introduced to encourage networks to learn the style of facial attributes from the exemplar in a self-supervised way. To guarantee the natural transition across the boundary of inpainted regions, a novel spatial variant gradient backpropagation technique is designed to adjust the loss gradients based on the spatial location. A variety of experimental results and comparisons on public CelebA-HQ and FFHQ datasets are presented to demonstrate the superiority of the proposed method in terms of both the quality and diversity in facial inpainting.