Goto

Collaborating Authors

 Jiang, Xiang


Fuzzy Cluster-Aware Contrastive Clustering for Time Series

arXiv.org Artificial Intelligence

The rapid growth of unlabeled time series data, driven by the Internet of Things (IoT), poses significant challenges in uncovering underlying patterns. Traditional unsupervised clustering methods often fail to capture the complex nature of time series data. Recent deep learning-based clustering approaches, while effective, struggle with insufficient representation learning and the integration of clustering objectives. To address these issues, we propose a fuzzy cluster-aware contrastive clustering framework (FCACC) that jointly optimizes representation learning and clustering. Our approach introduces a novel three-view data augmentation strategy to enhance feature extraction by leveraging various characteristics of time series data. Additionally, we propose a cluster-aware hard negative sample generation mechanism that dynamically constructs high-quality negative samples using clustering structure information, thereby improving the model's discriminative ability. By leveraging fuzzy clustering, FCACC dynamically generates cluster structures to guide the contrastive learning process, resulting in more accurate clustering. Extensive experiments on 40 benchmark datasets show that FCACC outperforms the selected baseline methods (eight in total), providing an effective solution for unsupervised time series learning.


Implicit Class-Conditioned Domain Alignment for Unsupervised Domain Adaptation

arXiv.org Machine Learning

We present an approach for unsupervised domain adaptation---with a strong focus on practical considerations of within-domain class imbalance and between-domain class distribution shift---from a class-conditioned domain alignment perspective. Current methods for class-conditioned domain alignment aim to explicitly minimize a loss function based on pseudo-label estimations of the target domain. However, these methods suffer from pseudo-label bias in the form of error accumulation. We propose a method that removes the need for explicit optimization of model parameters from pseudo-labels directly. Instead, we present a sampling-based implicit alignment approach, where the sample selection procedure is implicitly guided by the pseudo-labels. Theoretical analysis reveals the existence of a domain-discriminator shortcut in misaligned classes, which is addressed by the proposed implicit alignment approach to facilitate domain-adversarial learning. Empirical results and ablation studies confirm the effectiveness of the proposed approach, especially in the presence of within-domain class imbalance and between-domain class distribution shift.


On the Importance of Attention in Meta-Learning for Few-Shot Text Classification

arXiv.org Machine Learning

Current deep learning based text classification methods are limited by their ability to achieve fast learning and generalization when the data is scarce. We address this problem by integrating a meta-learning procedure that uses the knowledge learned across many tasks as an inductive bias towards better natural language understanding. Based on the Model-Agnostic Meta-Learning framework (MAML), we introduce the Attentive Task-Agnostic Meta-Learning (ATAML) algorithm for text classification. The essential difference between MAML and ATAML is in the separation of task-agnostic representation learning and task-specific attentive adaptation. The proposed ATAML is designed to encourage task-agnostic representation learning by way of task-agnostic parameterization and facilitate task-specific adaptation via attention mechanisms. We provide evidence to show that the attention mechanism in ATAML has a synergistic effect on learning performance. In comparisons with models trained from random initialization, pretrained models and meta trained MAML, our proposed ATAML method generalizes better on single-label and multi-label classification tasks in miniRCV1 and miniReuters-21578 datasets.