Not enough data to create a plot.
Try a different view from the menu above.
Jiang, Wei
Evolving Testing Scenario Generation Method and Intelligence Evaluation Framework for Automated Vehicles
Ma, Yining, Jiang, Wei, Zhang, Lingtong, Chen, Junyi, Wang, Hong, Lv, Chen, Wang, Xuesong, Xiong, Lu
Interaction between the background vehicles (BVs) and automated vehicles (AVs) in scenario-based testing plays a critical role in evaluating the intelligence of the AVs. Current testing scenarios typically employ predefined or scripted BVs, which inadequately reflect the complexity of human-like social behaviors in real-world driving scenarios, and also lack a systematic metric for evaluating the comprehensive intelligence of AVs. Therefore, this paper proposes an evolving scenario generation method that utilizes deep reinforcement learning (DRL) to create human-like BVs for testing and intelligence evaluation of AVs. Firstly, a class of driver models with human-like competitive, cooperative, and mutual driving motivations is designed. Then, utilizing an improved "level-k" training procedure, the three distinct driver models acquire game-based interactive driving policies. And these models are assigned to BVs for generating evolving scenarios in which all BVs can interact continuously and evolve diverse contents. Next, a framework including safety, driving efficiency, and interaction utility are presented to evaluate and quantify the intelligence performance of 3 systems under test (SUTs), indicating the effectiveness of the evolving scenario for intelligence testing. Finally, the complexity and fidelity of the proposed evolving testing scenario are validated. The results demonstrate that the proposed evolving scenario exhibits the highest level of complexity compared to other baseline scenarios and has more than 85% similarity to naturalistic driving data. This highlights the potential of the proposed method to facilitate the development and evaluation of high-level AVs in a realistic and challenging environment.
AraMUS: Pushing the Limits of Data and Model Scale for Arabic Natural Language Processing
Alghamdi, Asaad, Duan, Xinyu, Jiang, Wei, Wang, Zhenhai, Wu, Yimeng, Xia, Qingrong, Wang, Zhefeng, Zheng, Yi, Rezagholizadeh, Mehdi, Huai, Baoxing, Cheng, Peilun, Ghaddar, Abbas
Developing monolingual large Pre-trained Language Models (PLMs) is shown to be very successful in handling different tasks in Natural Language Processing (NLP). In this work, we present AraMUS, the largest Arabic PLM with 11B parameters trained on 529GB of high-quality Arabic textual data. AraMUS achieves state-of-the-art performances on a diverse set of Arabic classification and generative tasks. Moreover, AraMUS shows impressive few-shot learning abilities compared with the best existing Arabic PLMs.
Machine learning based iterative learning control for non-repetitive time-varying systems
Chen, Yiyang, Jiang, Wei, Charalambous, Themistoklis
The repetitive tracking task for time-varying systems (TVSs) with non-repetitive time-varying parameters, which is also called non-repetitive TVSs, is realized in this paper using iterative learning control (ILC). A machine learning (ML) based nominal model update mechanism, which utilizes the linear regression technique to update the nominal model at each ILC trial only using the current trial information, is proposed for non-repetitive TVSs in order to enhance the ILC performance. Given that the ML mechanism forces the model uncertainties to remain within the ILC robust tolerance, an ILC update law is proposed to deal with non-repetitive TVSs. How to tune parameters inside ML and ILC algorithms to achieve the desired aggregate performance is also provided. The robustness and reliability of the proposed method are verified by simulations. Comparison with current state-of-the-art demonstrates its superior control performance in terms of controlling precision. This paper broadens ILC applications from time-invariant systems to non-repetitive TVSs, adopts ML regression technique to estimate non-repetitive time-varying parameters between two ILC trials and proposes a detailed parameter tuning mechanism to achieve desired performance, which are the main contributions.
Non-stationary Projection-free Online Learning with Dynamic and Adaptive Regret Guarantees
Wang, Yibo, Yang, Wenhao, Jiang, Wei, Lu, Shiyin, Wang, Bing, Tang, Haihong, Wan, Yuanyu, Zhang, Lijun
Projection-free online learning has drawn increasing interest due to its efficiency in solving high-dimensional problems with complicated constraints. However, most existing projection-free online methods focus on minimizing the static regret, which unfortunately fails to capture the challenge of changing environments. In this paper, we investigate non-stationary projection-free online learning, and choose dynamic regret and adaptive regret to measure the performance. Specifically, we first provide a novel dynamic regret analysis for an existing projection-free method named $\text{BOGD}_\text{IP}$, and establish an $\mathcal{O}(T^{3/4}(1+P_T))$ dynamic regret bound, where $P_T$ denotes the path-length of the comparator sequence. Then, we improve the upper bound to $\mathcal{O}(T^{3/4}(1+P_T)^{1/4})$ by running multiple $\text{BOGD}_\text{IP}$ algorithms with different step sizes in parallel, and tracking the best one on the fly. Our results are the first general-case dynamic regret bounds for projection-free online learning, and can recover the existing $\mathcal{O}(T^{3/4})$ static regret by setting $P_T = 0$. Furthermore, we propose a projection-free method to attain an $\tilde{\mathcal{O}}(\tau^{3/4})$ adaptive regret bound for any interval with length $\tau$, which nearly matches the static regret over that interval. The essential idea is to maintain a set of $\text{BOGD}_\text{IP}$ algorithms dynamically, and combine them by a meta algorithm. Moreover, we demonstrate that it is also equipped with an $\mathcal{O}(T^{3/4}(1+P_T)^{1/4})$ dynamic regret bound. Finally, empirical studies verify our theoretical findings.
V2X-Boosted Federated Learning for Cooperative Intelligent Transportation Systems with Contextual Client Selection
Song, Rui, Lyu, Lingjuan, Jiang, Wei, Festag, Andreas, Knoll, Alois
Machine learning (ML) has revolutionized transportation systems, enabling autonomous driving and smart traffic services. Federated learning (FL) overcomes privacy constraints by training ML models in distributed systems, exchanging model parameters instead of raw data. However, the dynamic states of connected vehicles affect the network connection quality and influence the FL performance. To tackle this challenge, we propose a contextual client selection pipeline that uses Vehicle-to-Everything (V2X) messages to select clients based on the predicted communication latency. The pipeline includes: (i) fusing V2X messages, (ii) predicting future traffic topology, (iii) pre-clustering clients based on local data distribution similarity, and (iv) selecting clients with minimal latency for future model aggregation. Experiments show that our pipeline outperforms baselines on various datasets, particularly in non-iid settings.
On Function-Coupled Watermarks for Deep Neural Networks
Wen, Xiangyu, Li, Yu, Jiang, Wei, Xu, Qiang
Well-performed deep neural networks (DNNs) generally require massive labelled data and computational resources for training. Various watermarking techniques are proposed to protect such intellectual properties (IPs), wherein the DNN providers implant secret information into the model so that they can later claim IP ownership by retrieving their embedded watermarks with some dedicated trigger inputs. While promising results are reported in the literature, existing solutions suffer from watermark removal attacks, such as model fine-tuning and model pruning. In this paper, we propose a novel DNN watermarking solution that can effectively defend against the above attacks. Our key insight is to enhance the coupling of the watermark and model functionalities such that removing the watermark would inevitably degrade the model's performance on normal inputs. To this end, unlike previous methods relying on secret features learnt from out-of-distribution data, our method only uses features learnt from in-distribution data. Specifically, on the one hand, we propose to sample inputs from the original training dataset and fuse them as watermark triggers. On the other hand, we randomly mask model weights during training so that the information of our embedded watermarks spreads in the network. By doing so, model fine-tuning/pruning would not forget our function-coupled watermarks. Evaluation results on various image classification tasks show a 100\% watermark authentication success rate under aggressive watermark removal attacks, significantly outperforming existing solutions. Code is available: https://github.com/cure-lab/Function-Coupled-Watermark.
Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization
Jiang, Wei, Li, Gang, Wang, Yibo, Zhang, Lijun, Yang, Tianbao
Variance reduction techniques such as SPIDER/SARAH/STORM have been extensively studied to improve the convergence rates of stochastic non-convex optimization, which usually maintain and update a sequence of estimators for a single function across iterations. What if we need to track multiple functional mappings across iterations but only with access to stochastic samples of $\mathcal{O}(1)$ functional mappings at each iteration? There is an important application in solving an emerging family of coupled compositional optimization problems in the form of $\sum_{i=1}^m f_i(g_i(\mathbf{w}))$, where $g_i$ is accessible through a stochastic oracle. The key issue is to track and estimate a sequence of $\mathbf g(\mathbf{w})=(g_1(\mathbf{w}), \ldots, g_m(\mathbf{w}))$ across iterations, where $\mathbf g(\mathbf{w})$ has $m$ blocks and it is only allowed to probe $\mathcal{O}(1)$ blocks to attain their stochastic values and Jacobians. To improve the complexity for solving these problems, we propose a novel stochastic method named Multi-block-Single-probe Variance Reduced (MSVR) estimator to track the sequence of $\mathbf g(\mathbf{w})$. It is inspired by STORM but introduces a customized error correction term to alleviate the noise not only in stochastic samples for the selected blocks but also in those blocks that are not sampled. With the help of the MSVR estimator, we develop several algorithms for solving the aforementioned compositional problems with improved complexities across a spectrum of settings with non-convex/convex/strongly convex/Polyak-{\L}ojasiewicz (PL) objectives. Our results improve upon prior ones in several aspects, including the order of sample complexities and dependence on the strong convexity parameter. Empirical studies on multi-task deep AUC maximization demonstrate the better performance of using the new estimator.
Multi-Agent Reinforcement Learning with Shared Resources for Inventory Management
Ding, Yuandong, Feng, Mingxiao, Liu, Guozi, Jiang, Wei, Zhang, Chuheng, Zhao, Li, Song, Lei, Li, Houqiang, Jin, Yan, Bian, Jiang
In this paper, we consider the inventory management (IM) problem where we need to make replenishment decisions for a large number of stock keeping units (SKUs) to balance their supply and demand. In our setting, the constraint on the shared resources (such as the inventory capacity) couples the otherwise independent control for each SKU. We formulate the problem with this structure as Shared-Resource Stochastic Game (SRSG)and propose an efficient algorithm called Context-aware Decentralized PPO (CD-PPO). Through extensive experiments, we demonstrate that CD-PPO can accelerate the learning procedure compared with standard MARL algorithms.
Towards Homogeneous Modality Learning and Multi-Granularity Information Exploration for Visible-Infrared Person Re-Identification
Liu, Haojie, Xia, Daoxun, Jiang, Wei, Xu, Chao
Visible-infrared person re-identification (VI-ReID) is a challenging and essential task, which aims to retrieve a set of person images over visible and infrared camera views. In order to mitigate the impact of large modality discrepancy existing in heterogeneous images, previous methods attempt to apply generative adversarial network (GAN) to generate the modality-consisitent data. However, due to severe color variations between the visible domain and infrared domain, the generated fake cross-modality samples often fail to possess good qualities to fill the modality gap between synthesized scenarios and target real ones, which leads to sub-optimal feature representations. In this work, we address cross-modality matching problem with Aligned Grayscale Modality (AGM), an unified dark-line spectrum that reformulates visible-infrared dual-mode learning as a gray-gray single-mode learning problem. Specifically, we generate the grasycale modality from the homogeneous visible images. Then, we train a style tranfer model to transfer infrared images into homogeneous grayscale images. In this way, the modality discrepancy is significantly reduced in the image space. In order to reduce the remaining appearance discrepancy, we further introduce a multi-granularity feature extraction network to conduct feature-level alignment. Rather than relying on the global information, we propose to exploit local (head-shoulder) features to assist person Re-ID, which complements each other to form a stronger feature descriptor. Comprehensive experiments implemented on the mainstream evaluation datasets include SYSU-MM01 and RegDB indicate that our method can significantly boost cross-modality retrieval performance against the state of the art methods.
A Survey of Knowledge Enhanced Pre-trained Models
Yang, Jian, Xiao, Gang, Shen, Yulong, Jiang, Wei, Hu, Xinyu, Zhang, Ying, Peng, Jinghui
Pre-trained models learn contextualized word representations on large-scale text corpus through a self-supervised learning method, which has achieved promising performance after fine-tuning. These models, however, suffer from poor robustness and lack of interpretability. Pre-trained models with knowledge injection, which we call knowledge enhanced pre-trained models (KEPTMs), possess deep understanding and logical reasoning and introduce interpretability to some extent. In this survey, we provide a comprehensive overview of KEPTMs for natural language processing. We first introduce the progress of pre-trained models and knowledge representation learning. Then we systematically categorize existing KEPTMs from three different perspectives. Finally, we outline some potential directions of KEPTMs for future research.