Not enough data to create a plot.
Try a different view from the menu above.
Jiang, Wei
CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model
Di, Peng, Li, Jianguo, Yu, Hang, Jiang, Wei, Cai, Wenting, Cao, Yang, Chen, Chaoyu, Chen, Dajun, Chen, Hongwei, Chen, Liang, Fan, Gang, Gong, Jie, Gong, Zi, Hu, Wen, Guo, Tingting, Lei, Zhichao, Li, Ting, Li, Zheng, Liang, Ming, Liao, Cong, Liu, Bingchang, Liu, Jiachen, Liu, Zhiwei, Lu, Shaojun, Shen, Min, Wang, Guangpei, Wang, Huan, Wang, Zhi, Xu, Zhaogui, Yang, Jiawei, Ye, Qing, Zhang, Gehao, Zhang, Yu, Zhao, Zelin, Zheng, Xunjin, Zhou, Hailian, Zhu, Lifu, Zhu, Xianying
Code Large Language Models (Code LLMs) have gained significant attention in the industry due to their wide applications in the full lifecycle of software engineering. However, the effectiveness of existing models in understanding non-English inputs for multi-lingual code-related tasks is still far from well studied. This paper introduces CodeFuse-13B, an open-sourced pre-trained code LLM. It is specifically designed for code-related tasks with both English and Chinese prompts and supports over 40 programming languages. CodeFuse achieves its effectiveness by utilizing a high quality pre-training dataset that is carefully filtered by program analyzers and optimized during the training process. Extensive experiments are conducted using real-world usage scenarios, the industry-standard benchmark HumanEval-x, and the specially designed CodeFuseEval for Chinese prompts. To assess the effectiveness of CodeFuse, we actively collected valuable human feedback from the AntGroup's software development process where CodeFuse has been successfully deployed. The results demonstrate that CodeFuse-13B achieves a HumanEval pass@1 score of 37.10%, positioning it as one of the top multi-lingual code LLMs with similar parameter sizes. In practical scenarios, such as code generation, code translation, code comments, and testcase generation, CodeFuse performs better than other models when confronted with Chinese prompts.
KEEC: Embed to Control on An Equivariant Geometry
Cheng, Xiaoyuan, Yang, Yiming, Jiang, Wei, Hu, Yukun
This paper investigates how representation learning can enable optimal control in unknown and complex dynamics, such as chaotic and non-linear systems, without relying on prior domain knowledge of the dynamics. The core idea is to establish an equivariant geometry that is diffeomorphic to the manifold defined by a dynamical system and to perform optimal control within this corresponding geometry, which is a non-trivial task. To address this challenge, Koopman Embed to Equivariant Control (KEEC) is proposed for model learning and control. Inspired by Lie theory, KEEC begins by learning a non-linear dynamical system defined on a manifold and embedding trajectories into a Lie group. Subsequently, KEEC formulates an equivariant value function equation in reinforcement learning on the equivariant geometry, ensuring an invariant effect as the value function on the original manifold. By deriving analytical-form optimal actions on the equivariant value function, KEEC theoretically achieves quadratic convergence for the optimal equivariant value function by leveraging the differential information on the equivariant geometry. The effectiveness of KEEC is demonstrated in challenging dynamical systems, including chaotic ones like Lorenz-63. Notably, our results show that isometric functions, which maintain the compactness and completeness of geometry while preserving metric and differential information, consistently outperform loss functions lacking these characteristics.
Fast Controllable Diffusion Models for Undersampled MRI Reconstruction
Jiang, Wei, Xiong, Zhuang, Liu, Feng, Ye, Nan, Sun, Hongfu
Supervised deep learning methods have shown promise in undersampled Magnetic Resonance Imaging (MRI) reconstruction, but their requirement for paired data limits their generalizability to the diverse MRI acquisition parameters. Recently, unsupervised controllable generative diffusion models have been applied to undersampled MRI reconstruction, without paired data or model retraining for different MRI acquisitions. However, diffusion models are generally slow in sampling and state-of-the-art acceleration techniques can lead to sub-optimal results when directly applied to the controllable generation process. This study introduces a new algorithm called Predictor-Projector-Noisor (PPN), which enhances and accelerates controllable generation of diffusion models for undersampled MRI reconstruction. Our results demonstrate that PPN produces high-fidelity MR images that conform to undersampled k-space measurements with significantly shorter reconstruction time than other controllable sampling methods. In addition, the unsupervised PPN accelerated diffusion models are adaptable to different MRI acquisition parameters, making them more practical for clinical use than supervised learning techniques.
CoCA: Fusing position embedding with Collinear Constrained Attention for fine-tuning free context window extending
Zhu, Shiyi, Ye, Jing, Jiang, Wei, Zhang, Qi, Wu, Yifan, Li, Jianguo
Self-attention and position embedding are two key modules in Transformer based LLMs. The potential relationship among them are far from well studied, especially for context window extending. In this paper, we introduce collinear constrained relationship to fuse RoPE and self-attention, and name it as Collinear Constrained Attention (CoCA). We've analyzed the computational and spatial complexity of CoCA and have determined that it adds only minimal additional overhead compared to the original Transformer-based models. We provide an efficient implementation of CoCA, and make it drop-in replacement for any existing position embedding and attention modules in Transformer based models. Experiments show that CoCA performs extraordinary well on context window extending. For instance, a CoCA based GPT model trained with 512 context length can extend the context window up to 8K without perplexity diverging. This indicates more than 16x context window extending without any fine-tuning. Our code is released here: https://github.com/codefuse-ai/Collinear-Constrained-Attention
MFRL-BI: Design of a Model-free Reinforcement Learning Process Control Scheme by Using Bayesian Inference
Li, Yanrong, Du, Juan, Jiang, Wei
Design of process control scheme is critical for quality assurance to reduce variations in manufacturing systems. Taking semiconductor manufacturing as an example, extensive literature focuses on control optimization based on certain process models (usually linear models), which are obtained by experiments before a manufacturing process starts. However, in real applications, pre-defined models may not be accurate, especially for a complex manufacturing system. To tackle model inaccuracy, we propose a model-free reinforcement learning (MFRL) approach to conduct experiments and optimize control simultaneously according to real-time data. Specifically, we design a novel MFRL control scheme by updating the distribution of disturbances using Bayesian inference to reduce their large variations during manufacturing processes. As a result, the proposed MFRL controller is demonstrated to perform well in a nonlinear chemical mechanical planarization (CMP) process when the process model is unknown. Theoretical properties are also guaranteed when disturbances are additive. The numerical studies also demonstrate the effectiveness and efficiency of our methodology.
A Stochastic Online Forecast-and-Optimize Framework for Real-Time Energy Dispatch in Virtual Power Plants under Uncertainty
Jiang, Wei, Yi, Zhongkai, Wang, Li, Zhang, Hanwei, Zhang, Jihai, Lin, Fangquan, Yang, Cheng
Aggregating distributed energy resources in power systems significantly increases uncertainties, in particular caused by the fluctuation of renewable energy generation. This issue has driven the necessity of widely exploiting advanced predictive control techniques under uncertainty to ensure long-term economics and decarbonization. In this paper, we propose a real-time uncertainty-aware energy dispatch framework, which is composed of two key elements: (i) A hybrid forecast-and-optimize sequential task, integrating deep learning-based forecasting and stochastic optimization, where these two stages are connected by the uncertainty estimation at multiple temporal resolutions; (ii) An efficient online data augmentation scheme, jointly involving model pre-training and online fine-tuning stages. In this way, the proposed framework is capable to rapidly adapt to the real-time data distribution, as well as to target on uncertainties caused by data drift, model discrepancy and environment perturbations in the control process, and finally to realize an optimal and robust dispatch solution. The proposed framework won the championship in CityLearn Challenge 2022, which provided an influential opportunity to investigate the potential of AI application in the energy domain. In addition, comprehensive experiments are conducted to interpret its effectiveness in the real-life scenario of smart building energy management.
Continual Learning in Predictive Autoscaling
Hao, Hongyan, Chu, Zhixuan, Zhu, Shiyi, Jiang, Gangwei, Wang, Yan, Jiang, Caigao, Zhang, James, Jiang, Wei, Xue, Siqiao, Zhou, Jun
Predictive Autoscaling is used to forecast the workloads of servers and prepare the resources in advance to ensure service level objectives (SLOs) in dynamic cloud environments. However, in practice, its prediction task often suffers from performance degradation under abnormal traffics caused by external events (such as sales promotional activities and applications re-configurations), for which a common solution is to re-train the model with data of a long historical period, but at the expense of high computational and storage costs. To better address this problem, we propose a replay-based continual learning method, i.e., Density-based Memory Selection and Hint-based Network Learning Model (DMSHM), using only a small part of the historical log to achieve accurate predictions. First, we discover the phenomenon of sample overlap when applying replay-based continual learning in prediction tasks. In order to surmount this challenge and effectively integrate new sample distribution, we propose a density-based sample selection strategy that utilizes kernel density estimation to calculate sample density as a reference to compute sample weight, and employs weight sampling to construct a new memory set. Then we implement hint-based network learning based on hint representation to optimize the parameters. Finally, we conduct experiments on public and industrial datasets to demonstrate that our proposed method outperforms state-of-the-art continual learning methods in terms of memory capacity and prediction accuracy. Furthermore, we demonstrate remarkable practicability of DMSHM in real industrial applications.
Exploring the Physical World Adversarial Robustness of Vehicle Detection
Jiang, Wei, Zhang, Tianyuan, Liu, Shuangcheng, Ji, Weiyu, Zhang, Zichao, Xiao, Gang
Adversarial attacks can compromise the robustness of real-world detection models. However, evaluating these models under real-world conditions poses challenges due to resource-intensive experiments. Virtual simulations offer an alternative, but the absence of standardized benchmarks hampers progress. Addressing this, we propose an innovative instant-level data generation pipeline using the CARLA simulator. Through this pipeline, we establish the Discrete and Continuous Instant-level (DCI) dataset, enabling comprehensive experiments involving three detection models and three physical adversarial attacks. Our findings highlight diverse model performances under adversarial conditions. Yolo v6 demonstrates remarkable resilience, experiencing just a marginal 6.59% average drop in average precision (AP). In contrast, the ASA attack yields a substantial 14.51% average AP reduction, twice the effect of other algorithms. We also note that static scenes yield higher recognition AP values, and outcomes remain relatively consistent across varying weather conditions. Intriguingly, our study suggests that advancements in adversarial attack algorithms may be approaching its ``limitation''.In summary, our work underscores the significance of adversarial attacks in real-world contexts and introduces the DCI dataset as a versatile benchmark. Our findings provide valuable insights for enhancing the robustness of detection models and offer guidance for future research endeavors in the realm of adversarial attacks.
A Versatile Multi-Agent Reinforcement Learning Benchmark for Inventory Management
Yang, Xianliang, Liu, Zhihao, Jiang, Wei, Zhang, Chuheng, Zhao, Li, Song, Lei, Bian, Jiang
Multi-agent reinforcement learning (MARL) models multiple agents that interact and learn within a shared environment. This paradigm is applicable to various industrial scenarios such as autonomous driving, quantitative trading, and inventory management. However, applying MARL to these real-world scenarios is impeded by many challenges such as scaling up, complex agent interactions, and non-stationary dynamics. To incentivize the research of MARL on these challenges, we develop MABIM (Multi-Agent Benchmark for Inventory Management) which is a multi-echelon, multi-commodity inventory management simulator that can generate versatile tasks with these different challenging properties. Based on MABIM, we evaluate the performance of classic operations research (OR) methods and popular MARL algorithms on these challenging tasks to highlight their weaknesses and potential.
Learning Unnormalized Statistical Models via Compositional Optimization
Jiang, Wei, Qin, Jiayu, Wu, Lingyu, Chen, Changyou, Yang, Tianbao, Zhang, Lijun
Learning unnormalized statistical models (e.g., energy-based models) is computationally challenging due to the complexity of handling the partition function. To eschew this complexity, noise-contrastive estimation~(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise. However, as found in previous works, NCE may perform poorly in many tasks due to its flat loss landscape and slow convergence. In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models from the perspective of compositional optimization. To tackle the partition function, a noise distribution is introduced such that the log partition function can be written as a compositional function whose inner function can be estimated with stochastic samples. Hence, the objective can be optimized by stochastic compositional optimization algorithms. Despite being a simple method, we demonstrate that it is more favorable than NCE by (1) establishing a fast convergence rate and quantifying its dependence on the noise distribution through the variance of stochastic estimators; (2) developing better results for one-dimensional Gaussian mean estimation by showing our objective has a much favorable loss landscape and hence our method enjoys faster convergence; (3) demonstrating better performance on multiple applications, including density estimation, out-of-distribution detection, and real image generation.