Goto

Collaborating Authors

 Jiang, Min


Automating Adjudication of Cardiovascular Events Using Large Language Models

arXiv.org Artificial Intelligence

Cardiovascular events, such as heart attacks and strokes, remain a leading cause of mortality globally, necessitating meticulous monitoring and adjudication in clinical trials. This process, traditionally performed manually by clinical experts, is time-consuming, resource-intensive, and prone to inter-reviewer variability, potentially introducing bias and hindering trial progress. This study addresses these critical limitations by presenting a novel framework for automating the adjudication of cardiovascular events in clinical trials using Large Language Models (LLMs). We developed a two-stage approach: first, employing an LLM-based pipeline for event information extraction from unstructured clinical data and second, using an LLM-based adjudication process guided by a Tree of Thoughts approach and clinical endpoint committee (CEC) guidelines. Using cardiovascular event-specific clinical trial data, the framework achieved an F1-score of 0.82 for event extraction and an accuracy of 0.68 for adjudication. Furthermore, we introduce the CLEART score, a novel, automated metric specifically designed for evaluating the quality of AI-generated clinical reasoning in adjudicating cardiovascular events. This approach demonstrates significant potential for substantially reducing adjudication time and costs while maintaining high-quality, consistent, and auditable outcomes in clinical trials. The reduced variability and enhanced standardization also allow for faster identification and mitigation of risks associated with cardiovascular therapies.


Enhancing Large-scale UAV Route Planing with Global and Local Features via Reinforcement Graph Fusion

arXiv.org Artificial Intelligence

Numerous remarkable advancements have been made in accuracy, speed, and parallelism for solving the Unmanned Aerial Vehicle Route Planing (UAVRP). However, existing UAVRP solvers face challenges when attempting to scale effectively and efficiently for larger instances. In this paper, we present a generalization framework that enables current UAVRP solvers to robustly extend their capabilities to larger instances, accommodating up to 10,000 points, using widely recognized test sets. The UAVRP under a large number of patrol points is a typical large-scale TSP problem.Our proposed framework comprises three distinct steps. Firstly, we employ Delaunay triangulation to extract subgraphs from large instances while preserving global features. Secondly, we utilize an embedded TSP solver to obtain sub-results, followed by graph fusion. Finally, we implement a decoding strategy customizable to the user's requirements, resulting in high-quality solutions, complemented by a warming-up process for the heatmap. To demonstrate the flexibility of our approach, we integrate two representative TSP solvers into our framework and conduct a comprehensive comparative analysis against existing algorithms using large TSP benchmark datasets. The results unequivocally demonstrate that our framework efficiently scales existing TSP solvers to handle large instances and consistently outperforms state-of-the-art (SOTA) methods. Furthermore, since our proposed framework does not necessitate additional training or fine-tuning, we believe that its generality can significantly advance research on end-to-end UAVRP solvers, enabling the application of a broader range of methods to real-world scenarios.


Cross-Task Attack: A Self-Supervision Generative Framework Based on Attention Shift

arXiv.org Artificial Intelligence

Studying adversarial attacks on artificial intelligence (AI) systems helps discover model shortcomings, enabling the construction of a more robust system. Most existing adversarial attack methods only concentrate on single-task single-model or single-task cross-model scenarios, overlooking the multi-task characteristic of artificial intelligence systems. As a result, most of the existing attacks do not pose a practical threat to a comprehensive and collaborative AI system. However, implementing cross-task attacks is highly demanding and challenging due to the difficulty in obtaining the real labels of different tasks for the same picture and harmonizing the loss functions across different tasks. To address this issue, we propose a self-supervised Cross-Task Attack framework (CTA), which utilizes co-attention and anti-attention maps to generate cross-task adversarial perturbation. Specifically, the co-attention map reflects the area to which different visual task models pay attention, while the anti-attention map reflects the area that different visual task models neglect. CTA generates cross-task perturbations by shifting the attention area of samples away from the co-attention map and closer to the anti-attention map. We conduct extensive experiments on multiple vision tasks and the experimental results confirm the effectiveness of the proposed design for adversarial attacks.


Multi-View Subgraph Neural Networks: Self-Supervised Learning with Scarce Labeled Data

arXiv.org Artificial Intelligence

While graph neural networks (GNNs) have become the de-facto standard for graph-based node classification, they impose a strong assumption on the availability of sufficient labeled samples. This assumption restricts the classification performance of prevailing GNNs on many real-world applications suffering from low-data regimes. Specifically, features extracted from scarce labeled nodes could not provide sufficient supervision for the unlabeled samples, leading to severe over-fitting. In this work, we point out that leveraging subgraphs to capture long-range dependencies can augment the representation of a node with homophily properties, thus alleviating the low-data regime. However, prior works leveraging subgraphs fail to capture the long-range dependencies among nodes. To this end, we present a novel self-supervised learning framework, called multi-view subgraph neural networks (Muse), for handling long-range dependencies. In particular, we propose an information theory-based identification mechanism to identify two types of subgraphs from the views of input space and latent space, respectively. The former is to capture the local structure of the graph, while the latter captures the long-range dependencies among nodes. By fusing these two views of subgraphs, the learned representations can preserve the topological properties of the graph at large, including the local structure and long-range dependencies, thus maximizing their expressiveness for downstream node classification tasks. Experimental results show that Muse outperforms the alternative methods on node classification tasks with limited labeled data.


Improving Performance Insensitivity of Large-scale Multiobjective Optimization via Monte Carlo Tree Search

arXiv.org Artificial Intelligence

The large-scale multiobjective optimization problem (LSMOP) is characterized by simultaneously optimizing multiple conflicting objectives and involving hundreds of decision variables. Many real-world applications in engineering fields can be modeled as LSMOPs; simultaneously, engineering applications require insensitivity in performance. This requirement usually means that the results from the algorithm runs should not only be good for every run in terms of performance but also that the performance of multiple runs should not fluctuate too much, i.e., the algorithm shows good insensitivity. Considering that substantial computational resources are requested for each run, it is essential to improve upon the performance of the large-scale multiobjective optimization algorithm, as well as the insensitivity of the algorithm. However, existing large-scale multiobjective optimization algorithms solely focus on improving the performance of the algorithms, leaving the insensitivity characteristics unattended. In this work, we propose an evolutionary algorithm for solving LSMOPs based on Monte Carlo tree search, the so-called LMMOCTS, which aims to improve the performance and insensitivity for large-scale multiobjective optimization problems. The proposed method samples the decision variables to construct new nodes on the Monte Carlo tree for optimization and evaluation. It selects nodes with good evaluation for further search to reduce the performance sensitivity caused by large-scale decision variables. We compare the proposed algorithm with several state-of-the-art designs on different benchmark functions. We also propose two metrics to measure the sensitivity of the algorithm. The experimental results confirm the effectiveness and performance insensitivity of the proposed design for solving large-scale multiobjective optimization problems.


A Recommender System Approach for Very Large-scale Multiobjective Optimization

arXiv.org Artificial Intelligence

We define very large multi-objective optimization problems to be multiobjective optimization problems in which the number of decision variables is greater than 100,000 dimensions. This is an important class of problems as many real-world problems require optimizing hundreds of thousands of variables. Existing evolutionary optimization methods fall short of such requirements when dealing with problems at this very large scale. Inspired by the success of existing recommender systems to handle very large-scale items with limited historical interactions, in this paper we propose a method termed Very large-scale Multiobjective Optimization through Recommender Systems (VMORS). The idea of the proposed method is to transform the defined such very large-scale problems into a problem that can be tackled by a recommender system. In the framework, the solutions are regarded as users, and the different evolution directions are items waiting for the recommendation. We use Thompson sampling to recommend the most suitable items (evolutionary directions) for different users (solutions), in order to locate the optimal solution to a multiobjective optimization problem in a very large search space within acceptable time. We test our proposed method on different problems from 100,000 to 500,000 dimensions, and experimental results show that our method not only shows good performance but also significant improvement over existing methods.


A Cooperation-Aware Lane Change Method for Autonomous Vehicles

arXiv.org Artificial Intelligence

Lane change for autonomous vehicles (AVs) is an important but challenging task in complex dynamic traffic environments. Due to difficulties in guarantee safety as well as a high efficiency, AVs are inclined to choose relatively conservative strategies for lane change. To avoid the conservatism, this paper presents a cooperation-aware lane change method utilizing interactions between vehicles. We first propose an interactive trajectory prediction method to explore possible cooperations between an AV and the others. Further, an evaluation is designed to make a decision on lane change, in which safety, efficiency and comfort are taken into consideration. Thereafter, we propose a motion planning algorithm based on model predictive control (MPC), which incorporates AV's decision and surrounding vehicles' interactive behaviors into constraints so as to avoid collisions during lane change. Quantitative testing results show that compared with the methods without an interactive prediction, our method enhances driving efficiencies of the AV and other vehicles by 14.8$\%$ and 2.6$\%$ respectively, which indicates that a proper utilization of vehicle interactions can effectively reduce the conservatism of the AV and promote the cooperation between the AV and others.


Solving dynamic multi-objective optimization problems via support vector machine

arXiv.org Artificial Intelligence

Dynamic Multi-objective Optimization Problems (DMOPs) refer to optimization problems that objective functions will change with time. Solving DMOPs implies that the Pareto Optimal Set (POS) at different moments can be accurately found, and this is a very difficult job due to the dynamics of the optimization problems. The POS that have been obtained in the past can help us to find the POS of the next time more quickly and accurately. Therefore, in this paper we present a Support Vector Machine (SVM) based Dynamic Multi-Objective Evolutionary optimization Algorithm, called SVM-DMOEA. The algorithm uses the POS that has been obtained to train a SVM and then take the trained SVM to classify the solutions of the dynamic optimization problem at the next moment, and thus it is able to generate an initial population which consists of different individuals recognized by the trained SVM. The initial populuation can be fed into any population based optimization algorithm, e.g., the Nondominated Sorting Genetic Algorithm II (NSGA-II), to get the POS at that moment. The experimental results show the validity of our proposed approach.