Goto

Collaborating Authors

 Jiang, Junyan


Arrange, Inpaint, and Refine: Steerable Long-term Music Audio Generation and Editing via Content-based Controls

arXiv.org Artificial Intelligence

Controllable music generation plays a vital role in human-AI music co-creation. While Large Language Models (LLMs) have shown promise in generating high-quality music, their focus on autoregressive generation limits their utility in music editing tasks. To bridge this gap, we introduce a novel Parameter-Efficient Fine-Tuning (PEFT) method. This approach enables autoregressive language models to seamlessly address music inpainting tasks. Additionally, our PEFT method integrates frame-level content-based controls, facilitating track-conditioned music refinement and score-conditioned music arrangement. We apply this method to fine-tune MusicGen, a leading autoregressive music generation model. Our experiments demonstrate promising results across multiple music editing tasks, offering more flexible controls for future AI-driven music editing tools. A demo page\footnote{\url{https://kikyo-16.github.io/AIR/}.} showcasing our work and source codes\footnote{\url{https://github.com/Kikyo-16/airgen}.} are available online.


Content-based Controls For Music Large Language Modeling

arXiv.org Artificial Intelligence

Recent years have witnessed a rapid growth of large-scale language models in the domain of music audio. Such models enable end-to-end generation of higher-quality music, and some allow conditioned generation using text descriptions. However, the control power of text controls on music is intrinsically limited, as they can only describe music indirectly through meta-data (such as singers and instruments) or high-level representations (such as genre and emotion). We aim to further equip the models with direct and content-based controls on innate music languages such as pitch, chords and drum track. To this end, we contribute Coco-Mulla, a content-based control method for music large language modeling. It uses a parameter-efficient fine-tuning (PEFT) method tailored for Transformer-based audio models. Experiments show that our approach achieved high-quality music generation with low-resource semi-supervised learning, tuning with less than 4% parameters compared to the original model and training on a small dataset with fewer than 300 songs. Moreover, our approach enables effective content-based controls, and we illustrate the control power via chords and rhythms, two of the most salient features of music audio. Furthermore, we show that by combining content-based controls and text descriptions, our system achieves flexible music variation generation and style transfer. Our source codes and demos are available online.


Polyffusion: A Diffusion Model for Polyphonic Score Generation with Internal and External Controls

arXiv.org Artificial Intelligence

ABSTRACT We propose Polyffusion, a diffusion model that generates polyphonic music scores by regarding music as imagelike piano roll representations. The model is capable of controllable music generation with two paradigms: internal control and external control. We show that by using tive modeling [14,15], symbolic music generation still suffers internal and external controls, Polyffusion unifies a from the lack of controllability and consistency at different wide range of music creation tasks, including melody generation time scales [16]. In our study, we experiment with given accompaniment, accompaniment generation the idea of using diffusion models to approach controllable given melody, arbitrary music segment inpainting, and music symbolic music generation. Experimental results Inspired by the high-quality and controllable image show that our model significantly outperforms existing generation that diffusion models have achieved in computer Transformer and sampling-based baselines, and using vision, we devise an image-like piano roll format as pre-trained disentangled representations as external conditions the input, and used a UNet-based diffusion model to stepwise yields more effective controls.


Self-Supervised Hierarchical Metrical Structure Modeling

arXiv.org Artificial Intelligence

We propose a novel method to model hierarchical metrical structures for both symbolic music and audio signals in a self-supervised manner with minimal domain knowledge. The model trains and inferences on beat-aligned music signals and predicts an 8-layer hierarchical metrical tree from beat, measure to the section level. The training procedure does not require any hierarchical metrical labeling except for beats, purely relying on the nature of metrical regularity and inter-voice consistency as inductive biases. We show in experiments that the method achieves comparable performance with supervised baselines on multiple metrical structure analysis tasks on both symbolic music and audio signals. All demos, source code and pre-trained models are publicly available on GitHub.


A Unified Model for Zero-shot Music Source Separation, Transcription and Synthesis

arXiv.org Artificial Intelligence

We propose a unified model for three inter-related tasks: 1) to \textit{separate} individual sound sources from a mixed music audio, 2) to \textit{transcribe} each sound source to MIDI notes, and 3) to\textit{ synthesize} new pieces based on the timbre of separated sources. The model is inspired by the fact that when humans listen to music, our minds can not only separate the sounds of different instruments, but also at the same time perceive high-level representations such as score and timbre. To mirror such capability computationally, we designed a pitch-timbre disentanglement module based on a popular encoder-decoder neural architecture for source separation. The key inductive biases are vector-quantization for pitch representation and pitch-transformation invariant for timbre representation. In addition, we adopted a query-by-example method to achieve \textit{zero-shot} learning, i.e., the model is capable of doing source separation, transcription, and synthesis for \textit{unseen} instruments. The current design focuses on audio mixtures of two monophonic instruments. Experimental results show that our model outperforms existing multi-task baselines, and the transcribed score serves as a powerful auxiliary for separation tasks.


Deep Music Analogy Via Latent Representation Disentanglement

arXiv.org Machine Learning

Analogy is a key solution to automated music generation, featured by its ability to generate both natural and creative pieces based on only a few examples. In general, an analogy is made by partially transferring the music abstractions, i.e., high-level representations and their relationships, from one piece to another; however, this procedure requires disentangling music representations, which takes little effort for musicians but is non-trivial for computers. Three sub-problems arise: extracting latent representations from the observation, disentangling the representations so that each part has a unique semantic interpretation, and mapping the latent representations back to actual music. An explicitly-constrained conditional variational auto-encoder (EC2-VAE) is proposed as a unified solution to all three sub-problems. In this study, we focus on disentangling the pitch and rhythm representations of 8-beat music clips conditioned on chords. In producing music analogies, this model helps us to realize the imaginary situation of "what if" a piece is composed using a different pitch contour, rhythm pattern, chord progression etc., by borrowing the representations from other pieces. Finally, we validate the proposed disentanglement method using objective measurements and evaluate the analogy examples by a subjective study.