Jiang, Jize
Cache-of-Thought: Master-Apprentice Framework for Cost-Effective Vision Language Model Inference
Wu, Mingyuan, Jiang, Jize, Zheng, Haozhen, Li, Meitang, Li, Zhaoheng, Tian, Beitong, Chen, Bo, Park, Yongjoo, Zhang, Minjia, Zhai, Chengxiang, Nahrstedt, Klara
Vision Language Models (VLMs) have achieved remarkable success in a wide range of vision applications of increasing complexity and scales, yet choosing the right VLM model size involves a trade-off between response quality and cost. While smaller VLMs are cheaper to run, they typically produce responses only marginally better than random guessing on benchmarks such as MMMU. In this paper, we propose Cache of Thought (CoT), a master apprentice framework for collaborative inference between large and small VLMs. CoT manages high quality query results from large VLMs (master) in a cache, which are then selected via a novel multi modal retrieval and in-context learning to aid the performance of small VLMs (apprentice). We extensively evaluate CoT on various widely recognized and challenging general VQA benchmarks, and show that CoT increases overall VQA performance by up to 7.7% under the same budget, and specifically boosts the performance of apprentice VLMs by up to 36.6%.
Efficient Title Reranker for Fast and Improved Knowledge-Intense NLP
Chen, Ziyi, Tao, Heyi, Zuo, Daqian, Jiang, Jize, Yang, Jun, Wei, Yuxiang
We introduce Efficient Title Reranker via Broadcasting Query Encoder, a novel title reranking technique to achieve efficient title reranking 20x-40x faster than vanilla passage reranker. However, one of the challenges with the training of Efficient Title Reranker is the instability. Analyzing the issue, we found some very difficult ground truths might act as noisy labels causing accuracy to drop as well as some extreme values in model probability output causing nan. To address these issues, we introduce the Sigmoid Trick, a novel technique that reduces the gradient update of both cases resulting in better retrieval efficacy. Experiments showed the effectiveness of ETR and sigmoid trick as we achieved four state-of-the-art positions on the kilt knowledge benchmark.
Competence-Based Analysis of Language Models
Davies, Adam, Jiang, Jize, Zhai, ChengXiang
Despite the recent success of large, pretrained neural language models (LLMs) on a variety of prompting tasks, these models can be alarmingly brittle to small changes in inputs or application contexts. To better understand such behavior and motivate the design of more robust LLMs, we provide a causal formulation of linguistic competence in the context of LLMs and propose a general framework to study and measure LLM competence. Our framework, CALM (Competence-based Analysis of Language Models), establishes the first quantitative measure of LLM competence, which we study by damaging models' internal representations of various linguistic properties in the course of performing various tasks using causal probing and evaluating models' alignment under these interventions with a given causal model. We also develop a novel approach for performing causal probing interventions using gradient-based adversarial attacks, which can target a broader range of properties and representations than existing techniques. We carry out a case study of CALM using these interventions to analyze BERT and RoBERTa's competence across a variety of lexical inference tasks, showing that the CALM framework and competence metric can be valuable tools for explaining and predicting their behavior across these tasks.