Goto

Collaborating Authors

 Jiang, Jingyan


Q-DiT: Accurate Post-Training Quantization for Diffusion Transformers

arXiv.org Artificial Intelligence

Recent advancements in diffusion models, particularly the trend of architectural transformation from UNet-based Diffusion to Diffusion Transformer (DiT), have significantly improved the quality and scalability of image synthesis. Despite the incredible generative quality, the large computational requirements of these large-scale models significantly hinder the deployments in real-world scenarios. Post-training Quantization (PTQ) offers a promising solution by compressing model sizes and speeding up inference for the pretrained models while eliminating model retraining. However, we have observed the existing PTQ frameworks exclusively designed for both ViT and conventional Diffusion models fall into biased quantization and result in remarkable performance degradation. In this paper, we find that the DiTs typically exhibit considerable variance in terms of both weight and activation, which easily runs out of the limited numerical representations. To address this issue, we devise Q-DiT, which seamlessly integrates three techniques: fine-grained quantization to manage substantial variance across input channels of weights and activations, an automatic search strategy to optimize the quantization granularity and mitigate redundancies, and dynamic activation quantization to capture the activation changes across timesteps. Extensive experiments on the ImageNet dataset demonstrate the effectiveness of the proposed Q-DiT. Specifically, when quantizing DiT-XL/2 to W8A8 on ImageNet 256x256, Q-DiT achieves a remarkable reduction in FID by 1.26 compared to the baseline. Under a W4A8 setting, it maintains high fidelity in image generation, showcasing only a marginal increase in FID and setting a new benchmark for efficient, high-quality quantization in diffusion transformers. Code is available at \href{https://github.com/Juanerx/Q-DiT}{https://github.com/Juanerx/Q-DiT}.


Discover Your Neighbors: Advanced Stable Test-Time Adaptation in Dynamic World

arXiv.org Artificial Intelligence

Despite progress, deep neural networks still suffer performance declines under distribution shifts between training and test domains, leading to a substantial decrease in Quality of Experience (QoE) for multimedia applications. Existing test-time adaptation (TTA) methods are challenged by dynamic, multiple test distributions within batches. This work provides a new perspective on analyzing batch normalization techniques through class-related and class-irrelevant features, our observations reveal combining source and test batch normalization statistics robustly characterizes target distributions. However, test statistics must have high similarity. We thus propose Discover Your Neighbours (DYN), the first backward-free approach specialized for dynamic TTA. The core innovation is identifying similar samples via instance normalization statistics and clustering into groups which provides consistent class-irrelevant representations. Specifically, Our DYN consists of layer-wise instance statistics clustering (LISC) and cluster-aware batch normalization (CABN). In LISC, we perform layer-wise clustering of approximate feature samples at each BN layer by calculating the cosine similarity of instance normalization statistics across the batch. CABN then aggregates SBN and TCN statistics to collaboratively characterize the target distribution, enabling more robust representations. Experimental results validate DYN's robustness and effectiveness, demonstrating maintained performance under dynamic data stream patterns.


Decentralized Federated Learning: A Segmented Gossip Approach

arXiv.org Machine Learning

The emerging concern about data privacy and security has motivated the proposal of federated learning, which allows nodes to only synchronize the locally-trained models instead their own original data. Conventional federated learning architecture, inherited from the parameter server design, relies on highly centralized topologies and the assumption of large nodes-to-server bandwidths. However, in real-world federated learning scenarios the network capacities between nodes are highly uniformly distributed and smaller than that in a dat-acenter. It is of great challenges for conventional federated learning approaches to efficiently utilize network capacities between nodes. In this paper, we propose a model segment level decentralized federated learning to tackle this problem. In particular, we propose a segmented gossip approach, which not only makes full utilization of node-to- node bandwidth, but also has good training convergence. The experimental results show that even the training time can be highly reduced as compared to centralized federated learning.