Jiang, Jiawei
Towards Scalable and Deep Graph Neural Networks via Noise Masking
Liang, Yuxuan, Zhang, Wentao, Sheng, Zeang, Yang, Ling, Xu, Quanqing, Jiang, Jiawei, Tong, Yunhai, Cu, Bin
In recent years, Graph Neural Networks (GNNs) have achieved remarkable success in many graph mining tasks. However, scaling them to large graphs is challenging due to the high computational and storage costs of repeated feature propagation and non-linear transformation during training. One commonly employed approach to address this challenge is model-simplification, which only executes the Propagation (P) once in the pre-processing, and Combine (C) these receptive fields in different ways and then feed them into a simple model for better performance. Despite their high predictive performance and scalability, these methods still face two limitations. First, existing approaches mainly focus on exploring different C methods from the model perspective, neglecting the crucial problem of performance degradation with increasing P depth from the data-centric perspective, known as the over-smoothing problem. Second, pre-processing overhead takes up most of the end-to-end processing time, especially for large-scale graphs. To address these limitations, we present random walk with noise masking (RMask), a plug-and-play module compatible with the existing model-simplification works. This module enables the exploration of deeper GNNs while preserving their scalability. Unlike the previous model-simplification works, we focus on continuous P and found that the noise existing inside each P is the cause of the over-smoothing issue, and use the efficient masking mechanism to eliminate them. Experimental results on six real-world datasets demonstrate that model-simplification works equipped with RMask yield superior performance compared to their original version and can make a good trade-off between accuracy and efficiency.
Origin-Destination Demand Prediction: An Urban Radiation and Attraction Perspective
Ma, Xuan, Bao, Zepeng, Zhong, Ming, Zhu, Yuanyuan, Li, Chenliang, Jiang, Jiawei, Li, Qing, Qian, Tieyun
--In recent years, origin-destination (OD) demand prediction has gained significant attention for its profound implications in urban development. Existing deep learning methods primarily focus on the spatial or temporal dependency between regions yet neglecting regions' fundamental functional difference. Though physical methods have characterised regions' functions by their radiation and attraction capacities, these functions are defined on numerical factors like population without considering regions' intrinsic nominal attributes, e.g., a region is a residential or industrial district. Moreover, the complicated relationships between two types of capacities, e.g., the radiation capacity of a residential district in the morning will be transformed into the attraction capacity in the evening, are totally missing from physical methods. In this paper, we not only generalize the physical radiation and attraction capacities into the deep learning framework with the extended capability to fulfil regions' functions, but also present a new model that captures the relationships between two types of capacities. Specifically, we first model regions' radiation and attraction capacities using a bilateral branch network, each equipped with regions' attribute representations. We then describe the transformation relationship of different capacities within the same region using a parameter generation method. We finally unveil the competition relationship of different regions with the same attraction capacity through adversarial learning. Extensive experiments on two city datasets demonstrate the consistent improvements of our method over the state-of-the-art baselines, as well as the good explainability of regions' functions using their nominal attributes. With the spread of ride-hailing platforms like Uber and Didi, intelligent transportation systems have emerged as a vibrant research domain [1]-[3]. These systems are designed to offer convenient ride services, improve public transportation efficiency through proactive order assignment, and optimize profitability by identifying high-profit routes based on historical passenger demands [4]. Among the wide spectrum of applications, traffic demand forecasting is the focal point due to its vital role in urban development, traffic control, and route planning [5]-[11]. The conventional task in this field involves the prediction of the potential number of passenger demands in a specific region [10], [12], [13]. However, such a task is unable to capture associations in inter-regional flows. Tieyun Qian is the corresponding author. Figure 1: (a) An illustration of the region partition in Manhattan, New Y ork, and (b) and (c) are visualizations of the taxi outflow and inflow demand in a designated region with a red mark in (a) on 2019-01-17, respectively.
Can LLMs be Good Graph Judger for Knowledge Graph Construction?
Huang, Haoyu, Chen, Chong, He, Conghui, Li, Yang, Jiang, Jiawei, Zhang, Wentao
In real-world scenarios, most of the data obtained from information retrieval (IR) system is unstructured. Converting natural language sentences into structured Knowledge Graphs (KGs) remains a critical challenge. The quality of constructed KGs may also impact the performance of some KG-dependent domains like GraphRAG systems and recommendation systems. Recently, Large Language Models (LLMs) have demonstrated impressive capabilities in addressing a wide range of natural language processing tasks. However, there are still challenges when utilizing LLMs to address the task of generating structured KGs. And we have identified three limitations with respect to existing KG construction methods. (1)There is a large amount of information and excessive noise in real-world documents, which could result in extracting messy information. (2)Native LLMs struggle to effectively extract accuracy knowledge from some domain-specific documents. (3)Hallucinations phenomenon cannot be overlooked when utilizing LLMs directly as an unsupervised method for constructing KGs. In this paper, we propose GraphJudger, a knowledge graph construction framework to address the aforementioned challenges. We introduce three innovative modules in our method, which are entity-centric iterative text denoising, knowledge aware instruction tuning and graph judgement, respectively. We seek to utilize the capacity of LLMs to function as a graph judger, a capability superior to their role only as a predictor for KG construction problems. Experiments conducted on two general text-graph pair datasets and one domain-specific text-graph pair dataset show superior performances compared to baseline methods. The code of our proposed method is available at https://github.com/hhy-huang/GraphJudger.
Analysis of Distributed Optimization Algorithms on a Real Processing-In-Memory System
Rhyner, Steve, Luo, Haocong, Gรณmez-Luna, Juan, Sadrosadati, Mohammad, Jiang, Jiawei, Olgun, Ataberk, Gupta, Harshita, Zhang, Ce, Mutlu, Onur
Machine Learning (ML) training on large-scale datasets is a very expensive and time-consuming workload. Processor-centric architectures (e.g., CPU, GPU) commonly used for modern ML training workloads are limited by the data movement bottleneck, i.e., due to repeatedly accessing the training dataset. As a result, processor-centric systems suffer from performance degradation and high energy consumption. Processing-In-Memory (PIM) is a promising solution to alleviate the data movement bottleneck by placing the computation mechanisms inside or near memory. Our goal is to understand the capabilities and characteristics of popular distributed optimization algorithms on real-world PIM architectures to accelerate data-intensive ML training workloads. To this end, we 1) implement several representative centralized distributed optimization algorithms on UPMEM's real-world general-purpose PIM system, 2) rigorously evaluate these algorithms for ML training on large-scale datasets in terms of performance, accuracy, and scalability, 3) compare to conventional CPU and GPU baselines, and 4) discuss implications for future PIM hardware and the need to shift to an algorithm-hardware codesign perspective to accommodate decentralized distributed optimization algorithms. Our results demonstrate three major findings: 1) Modern general-purpose PIM architectures can be a viable alternative to state-of-the-art CPUs and GPUs for many memory-bound ML training workloads, when operations and datatypes are natively supported by PIM hardware, 2) the importance of carefully choosing the optimization algorithm that best fit PIM, and 3) contrary to popular belief, contemporary PIM architectures do not scale approximately linearly with the number of nodes for many data-intensive ML training workloads. To facilitate future research, we aim to open-source our complete codebase.
Jointly Learning Representations for Map Entities via Heterogeneous Graph Contrastive Learning
Jiang, Jiawei, Yang, Yifan, Wang, Jingyuan, Wu, Junjie
The electronic map plays a crucial role in geographic information systems, serving various urban managerial scenarios and daily life services. Developing effective Map Entity Representation Learning (MERL) methods is crucial to extracting embedding information from electronic maps and converting map entities into representation vectors for downstream applications. However, existing MERL methods typically focus on one specific category of map entities, such as POIs, road segments, or land parcels, which is insufficient for real-world diverse map-based applications and might lose latent structural and semantic information interacting between entities of different types. Moreover, using representations generated by separate models for different map entities can introduce inconsistencies. Motivated by this, we propose a novel method named HOME-GCL for learning representations of multiple categories of map entities. Our approach utilizes a heterogeneous map entity graph (HOME graph) that integrates both road segments and land parcels into a unified framework. A HOME encoder with parcel-segment joint feature encoding and heterogeneous graph transformer is then deliberately designed to convert segments and parcels into representation vectors. Moreover, we introduce two types of contrastive learning tasks, namely intra-entity and inter-entity tasks, to train the encoder in a self-supervised manner. Extensive experiments on three large-scale datasets covering road segment-based, land parcel-based, and trajectory-based tasks demonstrate the superiority of our approach. To the best of our knowledge, HOME-GCL is the first attempt to jointly learn representations for road segments and land parcels using a unified model.
Generative and Contrastive Paradigms Are Complementary for Graph Self-Supervised Learning
Wang, Yuxiang, Yan, Xiao, Hu, Chuang, Fu, Fangcheng, Zhang, Wentao, Wang, Hao, Shang, Shuo, Jiang, Jiawei
For graph self-supervised learning (GSSL), masked autoencoder (MAE) follows the generative paradigm and learns to reconstruct masked graph edges or node features. Contrastive Learning (CL) maximizes the similarity between augmented views of the same graph and is widely used for GSSL. However, MAE and CL are considered separately in existing works for GSSL. We observe that the MAE and CL paradigms are complementary and propose the graph contrastive masked autoencoder (GCMAE) framework to unify them. Specifically, by focusing on local edges or node features, MAE cannot capture global information of the graph and is sensitive to particular edges and features. On the contrary, CL excels in extracting global information because it considers the relation between graphs. As such, we equip GCMAE with an MAE branch and a CL branch, and the two branches share a common encoder, which allows the MAE branch to exploit the global information extracted by the CL branch. To force GCMAE to capture global graph structures, we train it to reconstruct the entire adjacency matrix instead of only the masked edges as in existing works. Moreover, a discrimination loss is proposed for feature reconstruction, which improves the disparity between node embeddings rather than reducing the reconstruction error to tackle the feature smoothing problem of MAE. We evaluate GCMAE on four popular graph tasks (i.e., node classification, node clustering, link prediction, and graph classification) and compare with 14 state-of-the-art baselines. The results show that GCMAE consistently provides good accuracy across these tasks, and the maximum accuracy improvement is up to 3.2% compared with the best-performing baseline.
Two-stage MR Image Segmentation Method for Brain Tumors based on Attention Mechanism
Zhu, Li, Jiang, Jiawei, Lu, Lin, Li, Jin
Multimodal magnetic resonance imaging (MRI) can reveal different patterns of human tissue and is crucial for clinical diagnosis. However, limited by cost, noise and manual labeling, obtaining diverse and reliable multimodal MR images remains a challenge. For the same lesion, different MRI manifestations have great differences in background information, coarse positioning and fine structure. In order to obtain better generation and segmentation performance, a coordination-spatial attention generation adversarial network (CASP-GAN) based on the cycle-consistent generative adversarial network (CycleGAN) is proposed. The performance of the generator is optimized by introducing the Coordinate Attention (CA) module and the Spatial Attention (SA) module. The two modules can make full use of the captured location information, accurately locating the interested region, and enhancing the generator model network structure. The ability to extract the structure information and the detailed information of the original medical image can help generate the desired image with higher quality. There exist some problems in the original CycleGAN that the training time is long, the parameter amount is too large, and it is difficult to converge. In response to this problem, we introduce the Coordinate Attention (CA) module to replace the Res Block to reduce the number of parameters, and cooperate with the spatial information extraction network above to strengthen the information extraction ability. On the basis of CASP-GAN, an attentional generative cross-modality segmentation (AGCMS) method is further proposed. This method inputs the modalities generated by CASP-GAN and the real modalities into the segmentation network for brain tumor segmentation. Experimental results show that CASP-GAN outperforms CycleGAN and some state-of-the-art methods in PSNR, SSMI and RMSE in most tasks.
Unified Data Management and Comprehensive Performance Evaluation for Urban Spatial-Temporal Prediction [Experiment, Analysis & Benchmark]
Jiang, Jiawei, Han, Chengkai, Zhao, Wayne Xin, Wang, Jingyuan
The field of urban spatial-temporal prediction is advancing rapidly with the development of deep learning techniques and the availability of large-scale datasets. However, challenges persist in accessing and utilizing diverse urban spatial-temporal datasets from different sources and stored in different formats, as well as determining effective model structures and components with the proliferation of deep learning models. This work addresses these challenges and provides three significant contributions. Firstly, we introduce "atomic files", a unified storage format designed for urban spatial-temporal big data, and validate its effectiveness on 40 diverse datasets, simplifying data management. Secondly, we present a comprehensive overview of technological advances in urban spatial-temporal prediction models, guiding the development of robust models. Thirdly, we conduct extensive experiments using diverse models and datasets, establishing a performance leaderboard and identifying promising research directions. Overall, this work effectively manages urban spatial-temporal data, guides future efforts, and facilitates the development of accurate and efficient urban spatial-temporal prediction models. It can potentially make long-term contributions to urban spatial-temporal data management and prediction, ultimately leading to improved urban living standards.
LibCity: A Unified Library Towards Efficient and Comprehensive Urban Spatial-Temporal Prediction
Jiang, Jiawei, Han, Chengkai, Jiang, Wenjun, Zhao, Wayne Xin, Wang, Jingyuan
As deep learning technology advances and more urban spatial-temporal data accumulates, an increasing number of deep learning models are being proposed to solve urban spatial-temporal prediction problems. However, there are limitations in the existing field, including open-source data being in various formats and difficult to use, few papers making their code and data openly available, and open-source models often using different frameworks and platforms, making comparisons challenging. A standardized framework is urgently needed to implement and evaluate these methods. To address these issues, we propose LibCity, an open-source library that offers researchers a credible experimental tool and a convenient development framework. In this library, we have reproduced 65 spatial-temporal prediction models and collected 55 spatial-temporal datasets, allowing researchers to conduct comprehensive experiments conveniently. By enabling fair model comparisons, designing a unified data storage format, and simplifying the process of developing new models, LibCity is poised to make significant contributions to the spatial-temporal prediction field.
BenchTemp: A General Benchmark for Evaluating Temporal Graph Neural Networks
Huang, Qiang, Jiang, Jiawei, Rao, Xi Susie, Zhang, Ce, Han, Zhichao, Zhang, Zitao, Wang, Xin, He, Yongjun, Xu, Quanqing, Zhao, Yang, Hu, Chuang, Shang, Shuo, Du, Bo
To handle graphs in which features or connectivities are evolving over time, a series of temporal graph neural networks (TGNNs) have been proposed. Despite the success of these TGNNs, the previous TGNN evaluations reveal several limitations regarding four critical issues: 1) inconsistent datasets, 2) inconsistent evaluation pipelines, 3) lacking workload diversity, and 4) lacking efficient comparison. Overall, there lacks an empirical study that puts TGNN models onto the same ground and compares them comprehensively. To this end, we propose BenchTemp, a general benchmark for evaluating TGNN models on various workloads. BenchTemp provides a set of benchmark datasets so that different TGNN models can be fairly compared. Further, BenchTemp engineers a standard pipeline that unifies the TGNN evaluation. With BenchTemp, we extensively compare the representative TGNN models on different tasks (e.g., link prediction and node classification) and settings (transductive and inductive), w.r.t. both effectiveness and efficiency metrics. We have made BenchTemp publicly available at https://github.com/qianghuangwhu/benchtemp.