Goto

Collaborating Authors

 Jiang, Jiachen


Cat-AIR: Content and Task-Aware All-in-One Image Restoration

arXiv.org Artificial Intelligence

All-in-one image restoration seeks to recover high-quality images from various types of degradation using a single model, without prior knowledge of the corruption source. However, existing methods often struggle to effectively and efficiently handle multiple degradation types. We present Cat-AIR, a novel \textbf{C}ontent \textbf{A}nd \textbf{T}ask-aware framework for \textbf{A}ll-in-one \textbf{I}mage \textbf{R}estoration. Cat-AIR incorporates an alternating spatial-channel attention mechanism that adaptively balances the local and global information for different tasks. Specifically, we introduce cross-layer channel attentions and cross-feature spatial attentions that allocate computations based on content and task complexity. Furthermore, we propose a smooth learning strategy that allows for seamless adaptation to new restoration tasks while maintaining performance on existing ones. Extensive experiments demonstrate that Cat-AIR achieves state-of-the-art results across a wide range of restoration tasks, requiring fewer FLOPs than previous methods, establishing new benchmarks for efficient all-in-one image restoration.


The Efficiency Spectrum of Large Language Models: An Algorithmic Survey

arXiv.org Artificial Intelligence

The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains, reshaping the artificial general intelligence landscape. However, the increasing computational and memory demands of these models present substantial challenges, hindering both academic research and practical applications. To address these issues, a wide array of methods, including both algorithmic and hardware solutions, have been developed to enhance the efficiency of LLMs. This survey delivers a comprehensive review of algorithmic advancements aimed at improving LLM efficiency. Unlike other surveys that typically focus on specific areas such as training or model compression, this paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs. Specifically, it covers various topics related to efficiency, including scaling laws, data utilization, architectural innovations, training and tuning strategies, and inference techniques. This paper aims to serve as a valuable resource for researchers and practitioners, laying the groundwork for future innovations in this critical research area. Our repository of relevant references is maintained at url{https://github.com/tding1/Efficient-LLM-Survey}.


DREAM: Diffusion Rectification and Estimation-Adaptive Models

arXiv.org Artificial Intelligence

We present DREAM, a novel training framework representing Diffusion Rectification and Estimation-Adaptive Models, requiring minimal code changes (just three lines) yet significantly enhancing the alignment of training with sampling in diffusion models. DREAM features two components: diffusion rectification, which adjusts training to reflect the sampling process, and estimation adaptation, which balances perception against distortion. When applied to image super-resolution (SR), DREAM adeptly navigates the tradeoff between minimizing distortion and preserving high image quality. Experiments demonstrate DREAM's superiority over standard diffusion-based SR methods, showing a $2$ to $3\times $ faster training convergence and a $10$ to $20\times$ reduction in necessary sampling steps to achieve comparable or superior results. We hope DREAM will inspire a rethinking of diffusion model training paradigms.


Generalized Neural Collapse for a Large Number of Classes

arXiv.org Artificial Intelligence

Neural collapse provides an elegant mathematical characterization of learned last layer representations (a.k.a. features) and classifier weights in deep classification models. Such results not only provide insights but also motivate new techniques for improving practical deep models. However, most of the existing empirical and theoretical studies in neural collapse focus on the case that the number of classes is small relative to the dimension of the feature space. This paper extends neural collapse to cases where the number of classes are much larger than the dimension of feature space, which broadly occur for language models, retrieval systems, and face recognition applications. We show that the features and classifier exhibit a generalized neural collapse phenomenon, where the minimum one-vs-rest margins is maximized.We provide empirical study to verify the occurrence of generalized neural collapse in practical deep neural networks. Moreover, we provide theoretical study to show that the generalized neural collapse provably occurs under unconstrained feature model with spherical constraint, under certain technical conditions on feature dimension and number of classes.