Goto

Collaborating Authors

 Jiang, Hua


MetaLR: Meta-tuning of Learning Rates for Transfer Learning in Medical Imaging

arXiv.org Artificial Intelligence

In medical image analysis, transfer learning is a powerful method for deep neural networks (DNNs) to generalize well on limited medical data. Prior efforts have focused on developing pre-training algorithms on domains such as lung ultrasound, chest X-ray, and liver CT to bridge domain gaps. However, we find that model fine-tuning also plays a crucial role in adapting medical knowledge to target tasks. The common fine-tuning method is manually picking transferable layers (e.g., the last few layers) to update, which is labor-expensive. In this work, we propose a meta-learning-based LR tuner, named MetaLR, to make different layers automatically co-adapt to downstream tasks based on their transferabilities across domains. MetaLR learns appropriate LRs for different layers in an online manner, preventing highly transferable layers from forgetting their medical representation abilities and driving less transferable layers to adapt actively to new domains. Extensive experiments on various medical applications show that MetaLR outperforms previous state-of-the-art (SOTA) fine-tuning strategies.


A Learning based Branch and Bound for Maximum Common Subgraph Problems

arXiv.org Machine Learning

Branch-and-bound (BnB) algorithms are widely used to solve combinatorial problems, and the performance crucially depends on its branching heuristic.In this work, we consider a typical problem of maximum common subgraph (MCS), and propose a branching heuristic inspired from reinforcement learning with a goal of reaching a tree leaf as early as possible to greatly reduce the search tree size.Extensive experiments show that our method is beneficial and outperforms current best BnB algorithm for the MCS.


A Two-Stage MaxSAT Reasoning Approach for the Maximum Weight Clique Problem

AAAI Conferences

MaxSAT reasoning is an effective technology used in modern branch-and-bound (BnB) algorithms for the Maximum Weight Clique problem (MWC) to reduce the search space. However, the current MaxSAT reasoning approach for MWC is carried out in a blind manner and is not guided by any relevant strategy. In this paper, we describe a new BnB algorithm for MWC that incorporates a novel two-stage MaxSAT reasoning approach. In each stage, the MaxSAT reasoning is specialised and guided for different tasks. Experiments on an extensive set of graphs show that the new algorithm implementing this approach significantly outperforms relevant exact and heuristic MWC algorithms in both small/medium and massive real-world graphs.


An Exact Algorithm for the Maximum Weight Clique Problem in Large Graphs

AAAI Conferences

We describe an exact branch-and-bound algorithm for the maximum weight clique problem (MWC), called WLMC, that is especially suited for large vertex-weighted graphs. WLMC incorporates two original contributions: a preprocessing to derive an initial vertex ordering and to reduce the size of the graph, and incremental vertex-weight splitting to reduce the number of branches in the search space. Experiments on representative large graphs from real-world applications show that WLMC greatly outperforms relevant exact and heuristic MWC algorithms, and refute the prevailing hypothesis that exact MWC algorithms are less adequate for large graphs than heuristic algorithms.


Predicting User Replying Behavior on a Large Online Dating Site

AAAI Conferences

Online dating sites have become popular platforms for people to look for potential romantic partners. Many online dating sites provide recommendations on compatible partners based on their proprietary matching algorithms. It is important that not only the recommended dates match the user's preference or criteria, but also the recommended users are interested in the user and likely to reciprocate when contacted. The goal of this paper is to predict whether an initial contact message from a user will be replied to by the receiver. The study is based on a large scale real-world dataset obtained from a major dating site in China with more than sixty million registered users. We formulate our reply prediction as a link prediction problem of social networks and approach it using a machine learning framework. The availability of a large amount of user profile information and the bipartite nature of the dating network present unique opportunities and challenges to the reply prediction problem. We extract user-based features from user profiles and graph-based features from the bipartite dating network, apply them in a variety of classification algorithms, and compare the utility of the features and performance of the classifiers. Our results show that the user-based and graph-based features result in similar performance, and can be used to effectively predict the reciprocal links. Only a small performance gain is achieved when both feature sets are used. Among the five classifiers we considered, random forests method outperforms the other four algorithms (naive Bayes, logistic regression, KNN, and SVM). Our methods and results can provide valuable guidelines to the design and performance of recommendation engine for online dating sites.