Plotting

 Jiang, Haotian


LSA: Latent Style Augmentation Towards Stain-Agnostic Cervical Cancer Screening

arXiv.org Artificial Intelligence

The deployment of computer-aided diagnosis systems for cervical cancer screening using whole slide images (WSIs) faces critical challenges due to domain shifts caused by staining variations across different scanners and imaging environments. While existing stain augmentation methods improve patch-level robustness, they fail to scale to WSIs due to two key limitations: (1) inconsistent stain patterns when extending patch operations to gigapixel slides, and (2) prohibitive computational/storage costs from offline processing of augmented WSIs.To address this, we propose Latent Style Augmentation (LSA), a framework that performs efficient, online stain augmentation directly on WSI-level latent features. We first introduce WSAug, a WSI-level stain augmentation method ensuring consistent stain across patches within a WSI. Using offline-augmented WSIs by WSAug, we design and train Stain Transformer, which can simulate targeted style in the latent space, efficiently enhancing the robustness of the WSI-level classifier. We validate our method on a multi-scanner WSI dataset for cervical cancer diagnosis. Despite being trained on data from a single scanner, our approach achieves significant performance improvements on out-of-distribution data from other scanners. Code will be available at https://github.com/caijd2000/LSA.


MITracker: Multi-View Integration for Visual Object Tracking

arXiv.org Artificial Intelligence

Multi-view object tracking (MVOT) offers promising solutions to challenges such as occlusion and target loss, which are common in traditional single-view tracking. However, progress has been limited by the lack of comprehensive multi-view datasets and effective cross-view integration methods. To overcome these limitations, we compiled a Multi-View object Tracking (MVTrack) dataset of 234K high-quality annotated frames featuring 27 distinct objects across various scenes. In conjunction with this dataset, we introduce a novel MVOT method, Multi-View Integration Tracker (MITracker), to efficiently integrate multi-view object features and provide stable tracking outcomes. MITracker can track any object in video frames of arbitrary length from arbitrary viewpoints. The key advancements of our method over traditional single-view approaches come from two aspects: (1) MITracker transforms 2D image features into a 3D feature volume and compresses it into a bird's eye view (BEV) plane, facilitating inter-view information fusion; (2) we propose an attention mechanism that leverages geometric information from fused 3D feature volume to refine the tracking results at each view. MITracker outperforms existing methods on the MVTrack and GMTD datasets, achieving state-of-the-art performance. The code and the new dataset will be available at https://mii-laboratory.github.io/MITracker/.


Differentially Private Synthetic Data via Foundation Model APIs 2: Text

arXiv.org Artificial Intelligence

Text data has become extremely valuable due to the emergence of machine learning algorithms that learn from it. A lot of high-quality text data generated in the real world is private and therefore cannot be shared or used freely due to privacy concerns. Generating synthetic replicas of private text data with a formal privacy guarantee, i.e., differential privacy (DP), offers a promising and scalable solution. However, existing methods necessitate DP finetuning of large language models (LLMs) on private data to generate DP synthetic data. This approach is not viable for proprietary LLMs (e.g., GPT-3.5) and also demands considerable computational resources for open-source LLMs. Lin et al. (2024) recently introduced the Private Evolution (PE) algorithm to generate DP synthetic images with only API access to diffusion models. In this work, we propose an augmented PE algorithm, named Aug-PE, that applies to the complex setting of text. We use API access to an LLM and generate DP synthetic text without any model training. We conduct comprehensive experiments on three benchmark datasets. Our results demonstrate that Aug-PE produces DP synthetic text that yields competitive utility with the SOTA DP finetuning baselines. This underscores the feasibility of relying solely on API access of LLMs to produce high-quality DP synthetic texts, thereby facilitating more accessible routes to privacy-preserving LLM applications. Our code and data are available at https://github.com/AI-secure/aug-pe.


Approximation theory of transformer networks for sequence modeling

arXiv.org Artificial Intelligence

The transformer is a widely applied architecture in sequence modeling applications, but the theoretical understanding of its working principles is limited. In this work, we investigate the ability of transformers to approximate sequential relationships. We first prove a universal approximation theorem for the transformer hypothesis space. From its derivation, we identify a novel notion of regularity under which we can prove an explicit approximation rate estimate. This estimate reveals key structural properties of the transformer and suggests the types of sequence relationships that the transformer is adapted to approximating. In particular, it allows us to concretely discuss the structural bias between the transformer and classical sequence modeling methods, such as recurrent neural networks. Our findings are supported by numerical experiments.


Forward and Inverse Approximation Theory for Linear Temporal Convolutional Networks

arXiv.org Artificial Intelligence

We present a theoretical analysis of the approximation properties of convolutional architectures when applied to the modeling of temporal sequences. Specifically, we prove an approximation rate estimate (Jackson-type result) and an inverse approximation theorem (Bernstein-type result), which together provide a comprehensive characterization of the types of sequential relationships that can be efficiently captured by a temporal convolutional architecture. The rate estimate improves upon a previous result via the introduction of a refined complexity measure, whereas the inverse approximation theorem is new.


Learning across Data Owners with Joint Differential Privacy

arXiv.org Artificial Intelligence

In this paper, we study the setting in which data owners train machine learning models collaboratively under a privacy notion called joint differential privacy [Kearns et al., 2018]. In this setting, the model trained for each data owner $j$ uses $j$'s data without privacy consideration and other owners' data with differential privacy guarantees. This setting was initiated in [Jain et al., 2021] with a focus on linear regressions. In this paper, we study this setting for stochastic convex optimization (SCO). We present an algorithm that is a variant of DP-SGD [Song et al., 2013; Abadi et al., 2016] and provides theoretical bounds on its population loss. We compare our algorithm to several baselines and discuss for what parameter setups our algorithm is more preferred. We also empirically study joint differential privacy in the multi-class classification problem over two public datasets. Our empirical findings are well-connected to the insights from our theoretical results.


A Brief Survey on the Approximation Theory for Sequence Modelling

arXiv.org Artificial Intelligence

The modelling of relationships between sequences is an important task that enables a wide array of applications, including classical time-series prediction problems in finance [1], and modern machine learning problems in natural language processing [2]. Another class of engineering applications involving sequential relationships are control systems, which study the dependence of a dynamical trajectory on an input control sequence [3]. In general, sequence-to-sequence relationships can be very complex. For example, when the index set for the sequences is infinite, one can understand these relationships as mappings between infinite-dimensional spaces. Thus, traditional modelling techniques are limited in their efficacy, especially when there is little prior knowledge on the system of interest.


Approximation Theory of Convolutional Architectures for Time Series Modelling

arXiv.org Machine Learning

We study the approximation properties of convolutional architectures applied to time series modelling, which can be formulated mathematically as a functional approximation problem. In the recurrent setting, recent results reveal an intricate connection between approximation efficiency and memory structures in the data generation process. In this paper, we derive parallel results for convolutional architectures, with WaveNet being a prime example. Our results reveal that in this new setting, approximation efficiency is not only characterised by memory, but also additional fine structures in the target relationship. This leads to a novel definition of spectrum-based regularity that measures the complexity of temporal relationships under the convolutional approximation scheme. These analyses provide a foundation to understand the differences between architectural choices for time series modelling and can give theoretically grounded guidance for practical applications.


Practical Algorithms for Best-K Identification in Multi-Armed Bandits

arXiv.org Machine Learning

In the Best-$K$ identification problem (Best-$K$-Arm), we are given $N$ stochastic bandit arms with unknown reward distributions. Our goal is to identify the $K$ arms with the largest means with high confidence, by drawing samples from the arms adaptively. This problem is motivated by various practical applications and has attracted considerable attention in the past decade. In this paper, we propose new practical algorithms for the Best-$K$-Arm problem, which have nearly optimal sample complexity bounds (matching the lower bound up to logarithmic factors) and outperform the state-of-the-art algorithms for the Best-$K$-Arm problem (even for $K=1$) in practice.