Jiang, Haoming
IHEval: Evaluating Language Models on Following the Instruction Hierarchy
Zhang, Zhihan, Li, Shiyang, Zhang, Zixuan, Liu, Xin, Jiang, Haoming, Tang, Xianfeng, Gao, Yifan, Li, Zheng, Wang, Haodong, Tan, Zhaoxuan, Li, Yichuan, Yin, Qingyu, Yin, Bing, Jiang, Meng
The instruction hierarchy, which establishes a priority order from system messages to user messages, conversation history, and tool outputs, is essential for ensuring consistent and safe behavior in language models (LMs). Despite its importance, this topic receives limited attention, and there is a lack of comprehensive benchmarks for evaluating models' ability to follow the instruction hierarchy. We bridge this gap by introducing IHEval, a novel benchmark comprising 3,538 examples across nine tasks, covering cases where instructions in different priorities either align or conflict. Our evaluation of popular LMs highlights their struggle to recognize instruction priorities. All evaluated models experience a sharp performance decline when facing conflicting instructions, compared to their original instruction-following performance. Moreover, the most competitive open-source model only achieves 48% accuracy in resolving such conflicts. Our results underscore the need for targeted optimization in the future development of LMs.
Hephaestus: Improving Fundamental Agent Capabilities of Large Language Models through Continual Pre-Training
Zhuang, Yuchen, Yang, Jingfeng, Jiang, Haoming, Liu, Xin, Cheng, Kewei, Lokegaonkar, Sanket, Gao, Yifan, Ping, Qing, Liu, Tianyi, Huang, Binxuan, Li, Zheng, Wang, Zhengyang, Chen, Pei, Wang, Ruijie, Zhang, Rongzhi, Zalmout, Nasser, Nigam, Priyanka, Yin, Bing, Zhang, Chao
Due to the scarcity of agent-oriented pre-training data, LLM-based autonomous agents typically rely on complex prompting or extensive fine-tuning, which often fails to introduce new capabilities while preserving strong generalizability. We introduce Hephaestus-Forge, the first large-scale pre-training corpus designed to enhance the fundamental capabilities of LLM agents in API function calling, intrinsic reasoning and planning, and adapting to environmental feedback. Hephaestus-Forge comprises 103B agent-specific data encompassing 76,537 APIs, including both tool documentation to introduce knowledge of API functions and function calling trajectories to strengthen intrinsic reasoning. To explore effective training protocols, we investigate scaling laws to identify the optimal recipe in data mixing ratios. By continual pre-training on Hephaestus-Forge, Hephaestus outperforms small- to medium-scale open-source LLMs and rivals commercial LLMs on three agent benchmarks, demonstrating the effectiveness of our pre-training corpus in enhancing fundamental agentic capabilities and generalization of LLMs to new tasks or environments.
RNR: Teaching Large Language Models to Follow Roles and Rules
Wang, Kuan, Bukharin, Alexander, Jiang, Haoming, Yin, Qingyu, Wang, Zhengyang, Zhao, Tuo, Shang, Jingbo, Zhang, Chao, Yin, Bing, Li, Xian, Chen, Jianshu, Li, Shiyang
Instruction fine-tuning (IFT) elicits instruction following capabilities and steers the behavior of large language models (LLMs) via supervised learning. However, existing models trained on open-source IFT datasets only have the ability to follow instructions from users, and often fail to follow complex role and rules specified by developers, a.k.a. system prompts. The ability to follow these roles and rules is essential for deployment, as it ensures that the model safely interacts with users within developer defined guidelines. To improve such role and rule following ability, we propose \model, an automated data generation pipeline that generates diverse roles and rules from existing IFT instructions, along with corresponding responses. This data can then be used to train models that follow complex system prompts. The models are evaluated on our newly created benchmarks for role and rule following ability, as well as standard instruction-following benchmarks and general NLP tasks. Our framework significantly improves role and rule following capability in LLMs, as evidenced by over 25% increase in pass-rate on rule adherence, i.e. following all requirements, in our experiments with the Alpaca and Ultrachat datasets. Moreover, our models achieves this increase without any regression on popular instruction following benchmarks.
BlendFilter: Advancing Retrieval-Augmented Large Language Models via Query Generation Blending and Knowledge Filtering
Wang, Haoyu, Li, Ruirui, Jiang, Haoming, Tian, Jinjin, Wang, Zhengyang, Luo, Chen, Tang, Xianfeng, Cheng, Monica, Zhao, Tuo, Gao, Jing
Retrieval-augmented Large Language Models (LLMs) offer substantial benefits in enhancing performance across knowledge-intensive scenarios. However, these methods often face challenges with complex inputs and encounter difficulties due to noisy knowledge retrieval, notably hindering model effectiveness. To address this issue, we introduce BlendFilter, a novel approach that elevates retrieval-augmented LLMs by integrating query generation blending with knowledge filtering. BlendFilter proposes the blending process through its query generation method, which integrates both external and internal knowledge augmentation with the original query, ensuring comprehensive information gathering. Additionally, our distinctive knowledge filtering module capitalizes on the intrinsic capabilities of the LLM, effectively eliminating extraneous data. We conduct extensive experiments on three open-domain question answering benchmarks, and the findings clearly indicate that our innovative BlendFilter surpasses state-of-the-art baselines significantly.
Robust Reinforcement Learning from Corrupted Human Feedback
Bukharin, Alexander, Hong, Ilgee, Jiang, Haoming, Li, Zichong, Zhang, Qingru, Zhang, Zixuan, Zhao, Tuo
Reinforcement learning from human feedback (RLHF) provides a principled framework for aligning AI systems with human preference data. For various reasons, e.g., personal bias, context ambiguity, lack of training, etc, human annotators may give incorrect or inconsistent preference labels. To tackle this challenge, we propose a robust RLHF approach -- $R^3M$, which models the potentially corrupted preference label as sparse outliers. Accordingly, we formulate the robust reward learning as an $\ell_1$-regularized maximum likelihood estimation problem. Computationally, we develop an efficient alternating optimization algorithm, which only incurs negligible computational overhead compared with the standard RLHF approach. Theoretically, we prove that under proper regularity conditions, $R^3M$ can consistently learn the underlying reward and identify outliers, provided that the number of outlier labels scales sublinearly with the preference sample size. Furthermore, we remark that $R^3M$ is versatile and can be extended to various preference optimization methods, including direct preference optimization (DPO). Our experiments on robotic control and natural language generation with large language models (LLMs) show that $R^3M$ improves robustness of the reward against several types of perturbations to the preference data.
Adaptive Preference Scaling for Reinforcement Learning with Human Feedback
Hong, Ilgee, Li, Zichong, Bukharin, Alexander, Li, Yixiao, Jiang, Haoming, Yang, Tianbao, Zhao, Tuo
Reinforcement learning from human feedback (RLHF) is a prevalent approach to align AI systems with human values by learning rewards from human preference data. Due to various reasons, however, such data typically takes the form of rankings over pairs of trajectory segments, which fails to capture the varying strengths of preferences across different pairs. In this paper, we propose a novel adaptive preference loss, underpinned by distributionally robust optimization (DRO), designed to address this uncertainty in preference strength. By incorporating an adaptive scaling parameter into the loss for each pair, our method increases the flexibility of the reward function. Specifically, it assigns small scaling parameters to pairs with ambiguous preferences, leading to more comparable rewards, and large scaling parameters to those with clear preferences for more distinct rewards. Computationally, our proposed loss function is strictly convex and univariate with respect to each scaling parameter, enabling its efficient optimization through a simple second-order algorithm. Our method is versatile and can be readily adapted to various preference optimization frameworks, including direct preference optimization (DPO). Our experiments with robotic control and natural language generation with large language models (LLMs) show that our method not only improves policy performance but also aligns reward function selection more closely with policy optimization, simplifying the hyperparameter tuning process.
Contextual Text Denoising with Masked Language Models
Sun, Yifu, Jiang, Haoming
Recently, with the help of deep learning models, significant advances have been made in different Natural Language Processing (NLP) tasks. Unfortunately, state-of-the-art models are vulnerable to noisy texts. We propose a new contextual text denoising algorithm based on the ready-to-use masked language model. The proposed algorithm does not require retraining of the model and can be integrated into any NLP system without additional training on paired cleaning training data. We evaluate our method under synthetic noise and natural noise and show that the proposed algorithm can use context information to correct noise text and improve the performance of noisy inputs in several downstream tasks.
SMURF-THP: Score Matching-based UnceRtainty quantiFication for Transformer Hawkes Process
Li, Zichong, Xu, Yanbo, Zuo, Simiao, Jiang, Haoming, Zhang, Chao, Zhao, Tuo, Zha, Hongyuan
Transformer Hawkes process models have shown to be successful in modeling event sequence data. However, most of the existing training methods rely on maximizing the likelihood of event sequences, which involves calculating some intractable integral. Moreover, the existing methods fail to provide uncertainty quantification for model predictions, e.g., confidence intervals for the predicted event's arrival time. To address these issues, we propose SMURF-THP, a score-based method for learning Transformer Hawkes process and quantifying prediction uncertainty. Specifically, SMURF-THP learns the score function of events' arrival time based on a score-matching objective that avoids the intractable computation. With such a learned score function, we can sample arrival time of events from the predictive distribution. This naturally allows for the quantification of uncertainty by computing confidence intervals over the generated samples. We conduct extensive experiments in both event type prediction and uncertainty quantification of arrival time. In all the experiments, SMURF-THP outperforms existing likelihood-based methods in confidence calibration while exhibiting comparable prediction accuracy.
Amazon-M2: A Multilingual Multi-locale Shopping Session Dataset for Recommendation and Text Generation
Jin, Wei, Mao, Haitao, Li, Zheng, Jiang, Haoming, Luo, Chen, Wen, Hongzhi, Han, Haoyu, Lu, Hanqing, Wang, Zhengyang, Li, Ruirui, Li, Zhen, Cheng, Monica Xiao, Goutam, Rahul, Zhang, Haiyang, Subbian, Karthik, Wang, Suhang, Sun, Yizhou, Tang, Jiliang, Yin, Bing, Tang, Xianfeng
Modeling customer shopping intentions is a crucial task for e-commerce, as it directly impacts user experience and engagement. Thus, accurately understanding customer preferences is essential for providing personalized recommendations. Session-based recommendation, which utilizes customer session data to predict their next interaction, has become increasingly popular. However, existing session datasets have limitations in terms of item attributes, user diversity, and dataset scale. As a result, they cannot comprehensively capture the spectrum of user behaviors and preferences. To bridge this gap, we present the Amazon Multilingual Multi-locale Shopping Session Dataset, namely Amazon-M2. It is the first multilingual dataset consisting of millions of user sessions from six different locales, where the major languages of products are English, German, Japanese, French, Italian, and Spanish. Remarkably, the dataset can help us enhance personalization and understanding of user preferences, which can benefit various existing tasks as well as enable new tasks. To test the potential of the dataset, we introduce three tasks in this work: (1) next-product recommendation, (2) next-product recommendation with domain shifts, and (3) next-product title generation. With the above tasks, we benchmark a range of algorithms on our proposed dataset, drawing new insights for further research and practice. In addition, based on the proposed dataset and tasks, we hosted a competition in the KDD CUP 2023 and have attracted thousands of users and submissions. The winning solutions and the associated workshop can be accessed at our website https://kddcup23.github.io/.
Situated Natural Language Explanations
Zhu, Zining, Jiang, Haoming, Yang, Jingfeng, Nag, Sreyashi, Zhang, Chao, Huang, Jie, Gao, Yifan, Rudzicz, Frank, Yin, Bing
Natural language is among the most accessible tools for explaining decisions to humans, and large pretrained language models (PLMs) have demonstrated impressive abilities to generate coherent natural language explanations (NLE). The existing NLE research perspectives do not take the audience into account. An NLE can have high textual quality, but it might not accommodate audiences' needs and preference. To address this limitation, we propose an alternative perspective, situated NLE, including a situated generation framework and a situated evaluation framework. On the generation side, we propose simple prompt engineering methods that adapt the NLEs to situations. In human studies, the annotators preferred the situated NLEs. On the evaluation side, we set up automated evaluation scores in lexical, semantic, and pragmatic categories. The scores can be used to select the most suitable prompts to generate NLEs. Situated NLE provides a perspective to conduct further research on automatic NLE generations.