Jiang, Haodi
Super-Resolution of SOHO/MDI Magnetograms of Solar Active Regions Using SDO/HMI Data and an Attention-Aided Convolutional Neural Network
Xu, Chunhui, Wang, Jason T. L., Wang, Haimin, Jiang, Haodi, Li, Qin, Abduallah, Yasser, Xu, Yan
Deep learning, which is a subfield of machine learning, has drawn significant interest in recent years. It was originally used in speech recognition (Deng, Hinton, and Kingsbury, 2013), natural language processing (Kastrati et al., 2021), and computer vision (Hu et al., 2018). More recently, it has been applied to astronomy, astrophysics, and solar physics (Liu et al., 2020a; Jiang et al., 2021; Espuña Fontcuberta et al., 2023; Mercea et al., 2023; Scully et al., 2023). Here, we present a new deep-learning method, specifically an attention-aided convolutional neural network (CNN), named SolarCNN, for solar image super-resolution. SolarCNN aims to enhance the quality of line-of-sight (LOS) magnetograms of solar active regions (ARs) collected by the Michelson Doppler Imager (MDI; Scherrer et al., 1995) on board the Solar and Heliospheric Observatory (SOHO; Domingo, Fleck, and Poland, 1995). The ground-truth labels used for training SolarCNN are the LOS magnetograms of the same ARs collected by the Helioseismic and Magnetic Imager (HMI; Schou et al., 2012) on board the Solar Dynamics Observatory (SDO; Pesnell, Thompson, and Chamberlin, 2012). Training and test samples are collected from ARs in the HMI and MDI overlap period, between 1 May 2010 and 11 April 2011. An AR on the solar disk usually consists of one or more sunspots and pores that are formed because of the concentrations of strong magnetic fields.
A Deep Learning Approach to Generating Photospheric Vector Magnetograms of Solar Active Regions for SOHO/MDI Using SDO/HMI and BBSO Data
Jiang, Haodi, Li, Qin, Hu, Zhihang, Liu, Nian, Abduallah, Yasser, Jing, Ju, Zhang, Genwei, Xu, Yan, Hsu, Wynne, Wang, Jason T. L., Wang, Haimin
Solar activity is usually caused by the evolution of solar magnetic fields. Magnetic field parameters derived from photospheric vector magnetograms of solar active regions have been used to analyze and forecast eruptive events such as solar flares and coronal mass ejections. Unfortunately, the most recent solar cycle 24 was relatively weak with few large flares, though it is the only solar cycle in which consistent time-sequence vector magnetograms have been available through the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) since its launch in 2010. In this paper, we look into another major instrument, namely the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) from 1996 to 2010. The data archive of SOHO/MDI covers more active solar cycle 23 with many large flares. However, SOHO/MDI data only has line-of-sight (LOS) magnetograms. We propose a new deep learning method, named MagNet, to learn from combined LOS magnetograms, Bx and By taken by SDO/HMI along with H-alpha observations collected by the Big Bear Solar Observatory (BBSO), and to generate vector components Bx' and By', which would form vector magnetograms with observed LOS data. In this way, we can expand the availability of vector magnetograms to the period from 1996 to present. Experimental results demonstrate the good performance of the proposed method. To our knowledge, this is the first time that deep learning has been used to generate photospheric vector magnetograms of solar active regions for SOHO/MDI using SDO/HMI and H-alpha data.