Goto

Collaborating Authors

 Jiang, Enyi


Towards Universal Certified Robustness with Multi-Norm Training

arXiv.org Artificial Intelligence

Existing certified training methods can only train models to be robust against a certain perturbation type (e.g. $l_\infty$ or $l_2$). However, an $l_\infty$ certifiably robust model may not be certifiably robust against $l_2$ perturbation (and vice versa) and also has low robustness against other perturbations (e.g. geometric transformation). To this end, we propose the first multi-norm certified training framework \textbf{CURE}, consisting of a new $l_2$ deterministic certified training defense and several multi-norm certified training methods, to attain better \emph{union robustness} when training from scratch or fine-tuning a pre-trained certified model. Further, we devise bound alignment and connect natural training with certified training for better union robustness. Compared with SOTA certified training, \textbf{CURE} improves union robustness up to $22.8\%$ on MNIST, $23.9\%$ on CIFAR-10, and $8.0\%$ on TinyImagenet. Further, it leads to better generalization on a diverse set of challenging unseen geometric perturbations, up to $6.8\%$ on CIFAR-10. Overall, our contributions pave a path towards \textit{universal certified robustness}.


RAMP: Boosting Adversarial Robustness Against Multiple $l_p$ Perturbations

arXiv.org Artificial Intelligence

There is considerable work on improving robustness against adversarial attacks bounded by a single $l_p$ norm using adversarial training (AT). However, the multiple-norm robustness (union accuracy) of AT models is still low. We observe that simultaneously obtaining good union and clean accuracy is hard since there are tradeoffs between robustness against multiple $l_p$ perturbations, and accuracy/robustness/efficiency. By analyzing the tradeoffs from the lens of distribution shifts, we identify the key tradeoff pair among $l_p$ attacks to boost efficiency and design a logit pairing loss to improve the union accuracy. Next, we connect natural training with AT via gradient projection, to find and incorporate useful information from natural training into AT, which moderates the accuracy/robustness tradeoff. Combining our contributions, we propose a framework called \textbf{RAMP}, to boost the robustness against multiple $l_p$ perturbations. We show \textbf{RAMP} can be easily adapted for both robust fine-tuning and full AT. For robust fine-tuning, \textbf{RAMP} obtains a union accuracy up to $53.5\%$ on CIFAR-10, and $29.7\%$ on ImageNet. For training from scratch, \textbf{RAMP} achieves SOTA union accuracy of $44.6\%$ and relatively good clean accuracy of $81.2\%$ on ResNet-18 against AutoAttack on CIFAR-10.


Federated Auto-weighted Domain Adaptation

arXiv.org Artificial Intelligence

Federated Domain Adaptation (FDA) describes the federated learning setting where a set of source clients work collaboratively to improve the performance of a target client where limited data is available. The domain shift between the source and target domains, coupled with sparse data in the target domain, makes FDA a challenging problem, e.g., common techniques such as FedAvg and fine-tuning, often fail with the presence of significant domain shift and data scarcity. To comprehensively understand the problem, we introduce metrics that characterize the FDA setting and put forth a theoretical framework for analyzing the performance of aggregation rules. We also propose a novel aggregation rule for FDA, Federated Gradient Projection ($\texttt{FedGP}$), used to aggregate the source gradients and target gradient during training. Importantly, our framework enables the development of an $\textit{auto-weighting scheme}$ that optimally combines the source and target gradients. This scheme improves both $\texttt{FedGP}$ and a simpler heuristic aggregation rule ($\texttt{FedDA}$). Experiments on synthetic and real-world datasets verify the theoretical insights and illustrate the effectiveness of the proposed method in practice.