Jiang, Chengming
LinkSAGE: Optimizing Job Matching Using Graph Neural Networks
Liu, Ping, Wei, Haichao, Hou, Xiaochen, Shen, Jianqiang, He, Shihai, Shen, Kay Qianqi, Chen, Zhujun, Borisyuk, Fedor, Hewlett, Daniel, Wu, Liang, Veeraraghavan, Srikant, Tsun, Alex, Jiang, Chengming, Zhang, Wenjing
We present LinkSAGE, an innovative framework that integrates Graph Neural Networks (GNNs) into large-scale personalized job matching systems, designed to address the complex dynamics of LinkedIns extensive professional network. Our approach capitalizes on a novel job marketplace graph, the largest and most intricate of its kind in industry, with billions of nodes and edges. This graph is not merely extensive but also richly detailed, encompassing member and job nodes along with key attributes, thus creating an expansive and interwoven network. A key innovation in LinkSAGE is its training and serving methodology, which effectively combines inductive graph learning on a heterogeneous, evolving graph with an encoder-decoder GNN model. This methodology decouples the training of the GNN model from that of existing Deep Neural Nets (DNN) models, eliminating the need for frequent GNN retraining while maintaining up-to-date graph signals in near realtime, allowing for the effective integration of GNN insights through transfer learning. The subsequent nearline inference system serves the GNN encoder within a real-world setting, significantly reducing online latency and obviating the need for costly real-time GNN infrastructure. Validated across multiple online A/B tests in diverse product scenarios, LinkSAGE demonstrates marked improvements in member engagement, relevance matching, and member retention, confirming its generalizability and practical impact.
LiRank: Industrial Large Scale Ranking Models at LinkedIn
Borisyuk, Fedor, Zhou, Mingzhou, Song, Qingquan, Zhu, Siyu, Tiwana, Birjodh, Parameswaran, Ganesh, Dangi, Siddharth, Hertel, Lars, Xiao, Qiang, Hou, Xiaochen, Ouyang, Yunbo, Gupta, Aman, Singh, Sheallika, Liu, Dan, Cheng, Hailing, Le, Lei, Hung, Jonathan, Keerthi, Sathiya, Wang, Ruoyan, Zhang, Fengyu, Kothari, Mohit, Zhu, Chen, Sun, Daqi, Dai, Yun, Luan, Xun, Zhu, Sirou, Wang, Zhiwei, Daftary, Neil, Shen, Qianqi, Jiang, Chengming, Wei, Haichao, Varshney, Maneesh, Ghoting, Amol, Ghosh, Souvik
We present LiRank, a large-scale ranking framework at LinkedIn that brings to production state-of-the-art modeling architectures and optimization methods. We unveil several modeling improvements, including Residual DCN, which adds attention and residual connections to the famous DCNv2 architecture. We share insights into combining and tuning SOTA architectures to create a unified model, including Dense Gating, Transformers and Residual DCN. We also propose novel techniques for calibration and describe how we productionalized deep learning based explore/exploit methods. To enable effective, production-grade serving of large ranking models, we detail how to train and compress models using quantization and vocabulary compression. We provide details about the deployment setup for large-scale use cases of Feed ranking, Jobs Recommendations, and Ads click-through rate (CTR) prediction. We summarize our learnings from various A/B tests by elucidating the most effective technical approaches. These ideas have contributed to relative metrics improvements across the board at LinkedIn: +0.5% member sessions in the Feed, +1.76% qualified job applications for Jobs search and recommendations, and +4.3% for Ads CTR. We hope this work can provide practical insights and solutions for practitioners interested in leveraging large-scale deep ranking systems.