Jiang, Bohan
Preference Leakage: A Contamination Problem in LLM-as-a-judge
Li, Dawei, Sun, Renliang, Huang, Yue, Zhong, Ming, Jiang, Bohan, Han, Jiawei, Zhang, Xiangliang, Wang, Wei, Liu, Huan
Large Language Models (LLMs) as judges and LLM-based data synthesis have emerged as two fundamental LLM-driven data annotation methods in model development. While their combination significantly enhances the efficiency of model training and evaluation, little attention has been given to the potential contamination brought by this new model development paradigm. In this work, we expose preference leakage, a contamination problem in LLM-as-a-judge caused by the relatedness between the synthetic data generators and LLM-based evaluators. To study this issue, we first define three common relatednesses between data generator LLM and judge LLM: being the same model, having an inheritance relationship, and belonging to the same model family. Through extensive experiments, we empirically confirm the bias of judges towards their related student models caused by preference leakage across multiple LLM baselines and benchmarks. Further analysis suggests that preference leakage is a pervasive issue that is harder to detect compared to previously identified biases in LLM-as-a-judge scenarios. All of these findings imply that preference leakage is a widespread and challenging problem in the area of LLM-as-a-judge. We release all codes and data at: https://github.com/David-Li0406/Preference-Leakage.
From Generation to Judgment: Opportunities and Challenges of LLM-as-a-judge
Li, Dawei, Jiang, Bohan, Huang, Liangjie, Beigi, Alimohammad, Zhao, Chengshuai, Tan, Zhen, Bhattacharjee, Amrita, Jiang, Yuxuan, Chen, Canyu, Wu, Tianhao, Shu, Kai, Cheng, Lu, Liu, Huan
Assessment and evaluation have long been critical challenges in artificial intelligence (AI) and natural language processing (NLP). However, traditional methods, whether matching-based or embedding-based, often fall short of judging subtle attributes and delivering satisfactory results. Recent advancements in Large Language Models (LLMs) inspire the "LLM-as-a-judge" paradigm, where LLMs are leveraged to perform scoring, ranking, or selection across various tasks and applications. This paper provides a comprehensive survey of LLM-based judgment and assessment, offering an in-depth overview to advance this emerging field. We begin by giving detailed definitions from both input and output perspectives. Then we introduce a comprehensive taxonomy to explore LLM-as-a-judge from three dimensions: what to judge, how to judge and where to judge. Finally, we compile benchmarks for evaluating LLM-as-a-judge and highlight key challenges and promising directions, aiming to provide valuable insights and inspire future research in this promising research area. Paper list and more resources about LLM-as-a-judge can be found at \url{https://github.com/llm-as-a-judge/Awesome-LLM-as-a-judge} and \url{https://llm-as-a-judge.github.io}.
In-Group Love, Out-Group Hate: A Framework to Measure Affective Polarization via Contentious Online Discussions
Nettasinghe, Buddhika, Rao, Ashwin, Jiang, Bohan, Percus, Allon, Lerman, Kristina
Affective polarization, the emotional divide between ideological groups marked by in-group love and out-group hate, has intensified in the United States, driving contentious issues like masking and lockdowns during the COVID-19 pandemic. Despite its societal impact, existing models of opinion change fail to account for emotional dynamics nor offer methods to quantify affective polarization robustly and in real-time. In this paper, we introduce a discrete choice model that captures decision-making within affectively polarized social networks and propose a statistical inference method estimate key parameters -- in-group love and out-group hate -- from social media data. Through empirical validation from online discussions about the COVID-19 pandemic, we demonstrate that our approach accurately captures real-world polarization dynamics and explains the rapid emergence of a partisan gap in attitudes towards masking and lockdowns. This framework allows for tracking affective polarization across contentious issues has broad implications for fostering constructive online dialogues in digital spaces.
Assessing the Impact of Conspiracy Theories Using Large Language Models
Jiang, Bohan, Li, Dawei, Tan, Zhen, Zhou, Xinyi, Rao, Ashwin, Lerman, Kristina, Bernard, H. Russell, Liu, Huan
Measuring the relative impact of CTs is important for prioritizing responses and allocating resources effectively, especially during crises. However, assessing the actual impact of CTs on the public poses unique challenges. It requires not only the collection of CT-specific knowledge but also diverse information from social, psychological, and cultural dimensions. Recent advancements in large language models (LLMs) suggest their potential utility in this context, not only due to their extensive knowledge from large training corpora but also because they can be harnessed for complex reasoning. In this work, we develop datasets of popular CTs with human-annotated impacts. Borrowing insights from human impact assessment processes, we then design tailored strategies to leverage LLMs for performing human-like CT impact assessments. Through rigorous experiments, we textit{discover that an impact assessment mode using multi-step reasoning to analyze more CT-related evidence critically produces accurate results; and most LLMs demonstrate strong bias, such as assigning higher impacts to CTs presented earlier in the prompt, while generating less accurate impact assessments for emotionally charged and verbose CTs.
LRQ-Fact: LLM-Generated Relevant Questions for Multimodal Fact-Checking
Beigi, Alimohammad, Jiang, Bohan, Li, Dawei, Kumarage, Tharindu, Tan, Zhen, Shaeri, Pouya, Liu, Huan
Human fact-checkers have specialized domain knowledge that allows them to formulate precise questions to verify information accuracy. However, this expert-driven approach is labor-intensive and is not scalable, especially when dealing with complex multimodal misinformation. In this paper, we propose a fully-automated framework, LRQ-Fact, for multimodal fact-checking. Firstly, the framework leverages Vision-Language Models (VLMs) and Large Language Models (LLMs) to generate comprehensive questions and answers for probing multimodal content. Next, a rule-based decision-maker module evaluates both the original content and the generated questions and answers to assess the overall veracity. Extensive experiments on two benchmarks show that LRQ-Fact improves detection accuracy for multimodal misinformation. Moreover, we evaluate its generalizability across different model backbones, offering valuable insights for further refinement.
Large Language Models for Data Annotation: A Survey
Tan, Zhen, Li, Dawei, Wang, Song, Beigi, Alimohammad, Jiang, Bohan, Bhattacharjee, Amrita, Karami, Mansooreh, Li, Jundong, Cheng, Lu, Liu, Huan
Data annotation generally refers to the labeling or generating of raw data with relevant information, which could be used for improving the efficacy of machine learning models. The process, however, is labor-intensive and costly. The emergence of advanced Large Language Models (LLMs), exemplified by GPT-4, presents an unprecedented opportunity to automate the complicated process of data annotation. While existing surveys have extensively covered LLM architecture, training, and general applications, we uniquely focus on their specific utility for data annotation. This survey contributes to three core aspects: LLM-Based Annotation Generation, LLM-Generated Annotations Assessment, and LLM-Generated Annotations Utilization. Furthermore, this survey includes an in-depth taxonomy of data types that LLMs can annotate, a comprehensive review of learning strategies for models utilizing LLM-generated annotations, and a detailed discussion of the primary challenges and limitations associated with using LLMs for data annotation. Serving as a key guide, this survey aims to assist researchers and practitioners in exploring the potential of the latest LLMs for data annotation, thereby fostering future advancements in this critical field.
Media Bias Matters: Understanding the Impact of Politically Biased News on Vaccine Attitudes in Social Media
Jiang, Bohan, Cheng, Lu, Tan, Zhen, Guo, Ruocheng, Liu, Huan
News media has been utilized as a political tool to stray from facts, presenting biased claims without evidence. Amid the COVID-19 pandemic, politically biased news (PBN) has significantly undermined public trust in vaccines, despite strong medical evidence supporting their efficacy. In this paper, we analyze: (i) how inherent vaccine stances subtly influence individuals' selection of news sources and participation in social media discussions; and (ii) the impact of exposure to PBN on users' attitudes toward vaccines. In doing so, we first curate a comprehensive dataset that connects PBN with related social media discourse. Utilizing advanced deep learning and causal inference techniques, we reveal distinct user behaviors between social media groups with various vaccine stances. Moreover, we observe that individuals with moderate stances, particularly the vaccine-hesitant majority, are more vulnerable to the influence of PBN compared to those with extreme views. Our findings provide critical insights to foster this line of research.
Disinformation Detection: An Evolving Challenge in the Age of LLMs
Jiang, Bohan, Tan, Zhen, Nirmal, Ayushi, Liu, Huan
The advent of generative Large Language Models (LLMs) such as ChatGPT has catalyzed transformative advancements across multiple domains. However, alongside these advancements, they have also introduced potential threats. One critical concern is the misuse of LLMs by disinformation spreaders, leveraging these models to generate highly persuasive yet misleading content that challenges the disinformation detection system. This work aims to address this issue by answering three research questions: (1) To what extent can the current disinformation detection technique reliably detect LLM-generated disinformation? (2) If traditional techniques prove less effective, can LLMs themself be exploited to serve as a robust defense against advanced disinformation? and, (3) Should both these strategies falter, what novel approaches can be proposed to counter this burgeoning threat effectively? A holistic exploration for the formation and detection of disinformation is conducted to foster this line of research.