Goto

Collaborating Authors

 Jiang, Aiqi


Re-examining Sexism and Misogyny Classification with Annotator Attitudes

arXiv.org Artificial Intelligence

Gender-Based Violence (GBV) is an increasing problem online, but existing datasets fail to capture the plurality of possible annotator perspectives or ensure the representation of affected groups. We revisit two important stages in the moderation pipeline for GBV: (1) manual data labelling; and (2) automated classification. For (1), we examine two datasets to investigate the relationship between annotator identities and attitudes and the responses they give to two GBV labelling tasks. To this end, we collect demographic and attitudinal information from crowd-sourced annotators using three validated surveys from Social Psychology. We find that higher Right Wing Authoritarianism scores are associated with a higher propensity to label text as sexist, while for Social Dominance Orientation and Neosexist Attitudes, higher scores are associated with a negative tendency to do so. For (2), we conduct classification experiments using Large Language Models and five prompting strategies, including infusing prompts with annotator information. We find: (i) annotator attitudes affect the ability of classifiers to predict their labels; (ii) including attitudinal information can boost performance when we use well-structured brief annotator descriptions; and (iii) models struggle to reflect the increased complexity and imbalanced classes of the new label sets.


Cross-lingual Offensive Language Detection: A Systematic Review of Datasets, Transfer Approaches and Challenges

arXiv.org Artificial Intelligence

The growing prevalence and rapid evolution of offensive language in social media amplify the complexities of detection, particularly highlighting the challenges in identifying such content across diverse languages. This survey presents a systematic and comprehensive exploration of Cross-Lingual Transfer Learning (CLTL) techniques in offensive language detection in social media. Our study stands as the first holistic overview to focus exclusively on the cross-lingual scenario in this domain. We analyse 67 relevant papers and categorise these studies across various dimensions, including the characteristics of multilingual datasets used, the cross-lingual resources employed, and the specific CLTL strategies implemented. According to "what to transfer", we also summarise three main CLTL transfer approaches: instance, feature, and parameter transfer. Additionally, we shed light on the current challenges and future research opportunities in this field. Furthermore, we have made our survey resources available online, including two comprehensive tables that provide accessible references to the multilingual datasets and CLTL methods used in the reviewed literature.


SexWEs: Domain-Aware Word Embeddings via Cross-lingual Semantic Specialisation for Chinese Sexism Detection in Social Media

arXiv.org Artificial Intelligence

The goal of sexism detection is to mitigate negative online content targeting certain gender groups of people. However, the limited availability of labeled sexism-related datasets makes it problematic to identify online sexism for low-resource languages. In this paper, we address the task of automatic sexism detection in social media for one low-resource language -- Chinese. Rather than collecting new sexism data or building cross-lingual transfer learning models, we develop a cross-lingual domain-aware semantic specialisation system in order to make the most of existing data. Semantic specialisation is a technique for retrofitting pre-trained distributional word vectors by integrating external linguistic knowledge (such as lexico-semantic relations) into the specialised feature space. To do this, we leverage semantic resources for sexism from a high-resource language (English) to specialise pre-trained word vectors in the target language (Chinese) to inject domain knowledge. We demonstrate the benefit of our sexist word embeddings (SexWEs) specialised by our framework via intrinsic evaluation of word similarity and extrinsic evaluation of sexism detection. Compared with other specialisation approaches and Chinese baseline word vectors, our SexWEs shows an average score improvement of 0.033 and 0.064 in both intrinsic and extrinsic evaluations, respectively. The ablative results and visualisation of SexWEs also prove the effectiveness of our framework on retrofitting word vectors in low-resource languages.


AnnoBERT: Effectively Representing Multiple Annotators' Label Choices to Improve Hate Speech Detection

arXiv.org Artificial Intelligence

Supervised approaches generally rely on majority-based labels. However, it is hard to achieve high agreement among annotators in subjective tasks such as hate speech detection. Existing neural network models principally regard labels as categorical variables, while ignoring the semantic information in diverse label texts. In this paper, we propose AnnoBERT, a first-of-its-kind architecture integrating annotator characteristics and label text with a transformer-based model to detect hate speech, with unique representations based on each annotator's characteristics via Collaborative Topic Regression (CTR) and integrate label text to enrich textual representations. During training, the model associates annotators with their label choices given a piece of text; during evaluation, when label information is not available, the model predicts the aggregated label given by the participating annotators by utilising the learnt association. The proposed approach displayed an advantage in detecting hate speech, especially in the minority class and edge cases with annotator disagreement. Improvement in the overall performance is the largest when the dataset is more label-imbalanced, suggesting its practical value in identifying real-world hate speech, as the volume of hate speech in-the-wild is extremely small on social media, when compared with normal (non-hate) speech. Through ablation studies, we show the relative contributions of annotator embeddings and label text to the model performance, and tested a range of alternative annotator embeddings and label text combinations.