Goto

Collaborating Authors

 Jian Yang


Curvilinear Distance Metric Learning

Neural Information Processing Systems

Distance Metric Learning aims to learn an appropriate metric that faithfully measures the distance between two data points. Traditional metric learning methods usually calculate the pairwise distance with fixed distance functions (e.g., Euclidean distance) in the projected feature spaces. However, they fail to learn the underlying geometries of the sample space, and thus cannot exactly predict the intrinsic distances between data points. To address this issue, we first reveal that the traditional linear distance metric is equivalent to the cumulative arc length between the data pair's nearest points on the learned straight measurer lines. After that, by extending such straight lines to general curved forms, we propose a Curvilinear Distance Metric Learning (CDML) method, which adaptively learns the nonlinear geometries of the training data. By virtue of Weierstrass theorem, the proposed CDML is equivalently parameterized with a 3-order tensor, and the optimization algorithm is designed to learn the tensor parameter. Theoretical analysis is derived to guarantee the effectiveness and soundness of CDML.


Curvilinear Distance Metric Learning

Neural Information Processing Systems

Distance Metric Learning aims to learn an appropriate metric that faithfully measures the distance between two data points. Traditional metric learning methods usually calculate the pairwise distance with fixed distance functions (e.g., Euclidean distance) in the projected feature spaces. However, they fail to learn the underlying geometries of the sample space, and thus cannot exactly predict the intrinsic distances between data points. To address this issue, we first reveal that the traditional linear distance metric is equivalent to the cumulative arc length between the data pair's nearest points on the learned straight measurer lines. After that, by extending such straight lines to general curved forms, we propose a Curvilinear Distance Metric Learning (CDML) method, which adaptively learns the nonlinear geometries of the training data. By virtue of Weierstrass theorem, the proposed CDML is equivalently parameterized with a 3-order tensor, and the optimization algorithm is designed to learn the tensor parameter. Theoretical analysis is derived to guarantee the effectiveness and soundness of CDML.


LightRNN: Memory and Computation-Efficient Recurrent Neural Networks

Neural Information Processing Systems

Recurrent neural networks (RNNs) have achieved state-of-the-art performances in many natural language processing tasks, such as language modeling and machine translation. However, when the vocabulary is large, the RNN model will become very big (e.g., possibly beyond the memory capacity of a GPU device) and its training will become very inefficient. In this work, we propose a novel technique to tackle this challenge. The key idea is to use 2-Component (2C) shared embedding for word representations. We allocate every word in the vocabulary into a table, each row of which is associated with a vector, and each column associated with another vector.