Jiaming Song
Bias and Generalization in Deep Generative Models: An Empirical Study
Shengjia Zhao, Hongyu Ren, Arianna Yuan, Jiaming Song, Noah Goodman, Stefano Ermon
In high dimensional settings, density estimation algorithms rely crucially on their inductive bias. Despite recent empirical success, the inductive bias of deep generative models is not well understood. In this paper we propose a framework to systematically investigate bias and generalization in deep generative models of images. Inspired by experimental methods from cognitive psychology, we probe each learning algorithm with carefully designed training datasets to characterize when and how existing models generate novel attributes and their combinations. We identify similarities to human psychology and verify that these patterns are consistent across commonly used models and architectures.
Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting
Aditya Grover, Jiaming Song, Ashish Kapoor, Kenneth Tran, Alekh Agarwal, Eric J. Horvitz, Stefano Ermon
A learned generative model often produces biased statistics relative to the underlying data distribution. A standard technique to correct this bias is importance sampling, where samples from the model are weighted by the likelihood ratio under model and true distributions. When the likelihood ratio is unknown, it can be estimated by training a probabilistic classifier to distinguish samples from the two distributions. We show that this likelihood-free importance weighting method induces a new energy-based model and employ it to correct for the bias in existing models. We find that this technique consistently improves standard goodness-of-fit metrics for evaluating the sample quality of state-of-the-art deep generative models, suggesting reduced bias. Finally, we demonstrate its utility on representative applications in a) data augmentation for classification using generative adversarial networks, and b) model-based policy evaluation using off-policy data.
InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations
Yunzhu Li, Jiaming Song, Stefano Ermon
The goal of imitation learning is to mimic expert behavior without access to an explicit reward signal. Expert demonstrations provided by humans, however, often show significant variability due to latent factors that are typically not explicitly modeled. In this paper, we propose a new algorithm that can infer the latent structure of expert demonstrations in an unsupervised way. Our method, built on top of Generative Adversarial Imitation Learning, can not only imitate complex behaviors, but also learn interpretable and meaningful representations of complex behavioral data, including visual demonstrations. In the driving domain, we show that a model learned from human demonstrations is able to both accurately reproduce a variety of behaviors and accurately anticipate human actions using raw visual inputs. Compared with various baselines, our method can better capture the latent structure underlying expert demonstrations, often recovering semantically meaningful factors of variation in the data.
A-NICE-MC: Adversarial Training for MCMC
Jiaming Song, Shengjia Zhao, Stefano Ermon
Existing Markov Chain Monte Carlo (MCMC) methods are either based on generalpurpose and domain-agnostic schemes, which can lead to slow convergence, or problem-specific proposals hand-crafted by an expert. In this paper, we propose A-NICE-MC, a novel method to automatically design efficient Markov chain kernels tailored for a specific domain. First, we propose an efficient likelihood-free adversarial training method to train a Markov chain and mimic a given data distribution. Then, we leverage flexible volume preserving flows to obtain parametric kernels for MCMC. Using a bootstrap approach, we show how to train efficient Markov chains to sample from a prescribed posterior distribution by iteratively improving the quality of both the model and the samples. Empirical results demonstrate that A-NICE-MC combines the strong guarantees of MCMC with the expressiveness of deep neural networks, and is able to significantly outperform competing methods such as Hamiltonian Monte Carlo.
Bias and Generalization in Deep Generative Models: An Empirical Study
Shengjia Zhao, Hongyu Ren, Arianna Yuan, Jiaming Song, Noah Goodman, Stefano Ermon
In high dimensional settings, density estimation algorithms rely crucially on their inductive bias. Despite recent empirical success, the inductive bias of deep generative models is not well understood. In this paper we propose a framework to systematically investigate bias and generalization in deep generative models of images. Inspired by experimental methods from cognitive psychology, we probe each learning algorithm with carefully designed training datasets to characterize when and how existing models generate novel attributes and their combinations. We identify similarities to human psychology and verify that these patterns are consistent across commonly used models and architectures.
Multi-Agent Generative Adversarial Imitation Learning
Jiaming Song, Hongyu Ren, Dorsa Sadigh, Stefano Ermon
Imitation learning algorithms can be used to learn a policy from expert demonstrations without access to a reward signal. However, most existing approaches are not applicable in multi-agent settings due to the existence of multiple (Nash) equilibria and non-stationary environments. We propose a new framework for multi-agent imitation learning for general Markov games, where we build upon a generalized notion of inverse reinforcement learning. We further introduce a practical multiagent actor-critic algorithm with good empirical performance. Our method can be used to imitate complex behaviors in high-dimensional environments with multiple cooperative or competing agents.
A-NICE-MC: Adversarial Training for MCMC
Jiaming Song, Shengjia Zhao, Stefano Ermon
Existing Markov Chain Monte Carlo (MCMC) methods are either based on generalpurpose and domain-agnostic schemes, which can lead to slow convergence, or problem-specific proposals hand-crafted by an expert. In this paper, we propose A-NICE-MC, a novel method to automatically design efficient Markov chain kernels tailored for a specific domain. First, we propose an efficient likelihood-free adversarial training method to train a Markov chain and mimic a given data distribution. Then, we leverage flexible volume preserving flows to obtain parametric kernels for MCMC. Using a bootstrap approach, we show how to train efficient Markov chains to sample from a prescribed posterior distribution by iteratively improving the quality of both the model and the samples. Empirical results demonstrate that A-NICE-MC combines the strong guarantees of MCMC with the expressiveness of deep neural networks, and is able to significantly outperform competing methods such as Hamiltonian Monte Carlo.