Goto

Collaborating Authors

 Jia, Zhen


ProxSparse: Regularized Learning of Semi-Structured Sparsity Masks for Pretrained LLMs

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated exceptional performance in natural language processing tasks, yet their massive size makes serving them inefficient and costly. Semi-structured pruning has emerged as an effective method for model acceleration, but existing approaches are suboptimal because they focus on local, layer-wise optimizations using heuristic rules, failing to leverage global feedback. We present ProxSparse, a learning-based framework for mask selection enabled by regularized optimization. ProxSparse transforms the rigid, non-differentiable mask selection process into a smoother optimization procedure, allowing gradual mask exploration with flexibility. ProxSparse does not involve additional weight updates once the mask is determined. Our extensive evaluations on 7 widely used models show that ProxSparse consistently outperforms previously proposed semi-structured mask selection methods with significant improvement, demonstrating the effectiveness of our learned approach towards semi-structured pruning.


Extrapolated Urban View Synthesis Benchmark

arXiv.org Artificial Intelligence

Photorealistic simulators are essential for the training and evaluation of vision-centric autonomous vehicles (AVs). At their core is Novel View Synthesis (NVS), a crucial capability that generates diverse unseen viewpoints to accommodate the broad and continuous pose distribution of AVs. Recent advances in radiance fields, such as 3D Gaussian Splatting, achieve photorealistic rendering at real-time speeds and have been widely used in modeling large-scale driving scenes. However, their performance is commonly evaluated using an interpolated setup with highly correlated training and test views. In contrast, extrapolation, where test views largely deviate from training views, remains underexplored, limiting progress in generalizable simulation technology. To address this gap, we leverage publicly available AV datasets with multiple traversals, multiple vehicles, and multiple cameras to build the first Extrapolated Urban View Synthesis (EUVS) benchmark. Meanwhile, we conduct quantitative and qualitative evaluations of state-of-the-art Gaussian Splatting methods across different difficulty levels. Our results show that Gaussian Splatting is prone to overfitting to training views. Besides, incorporating diffusion priors and improving geometry cannot fundamentally improve NVS under large view changes, highlighting the need for more robust approaches and large-scale training. We have released our data to help advance self-driving and urban robotics simulation technology.


Marconi: Prefix Caching for the Era of Hybrid LLMs

arXiv.org Artificial Intelligence

Hybrid models that combine the language modeling capabilities of Attention layers with the efficiency of Recurrent layers (e.g., State Space Models) have gained traction in practically supporting long contexts in Large Language Model serving. Yet, the unique properties of these models complicate the usage of complementary efficiency optimizations such as prefix caching that skip redundant computations across requests. Most notably, their use of in-place state updates for recurrent layers precludes rolling back cache entries for partial sequence overlaps, and instead mandates only exact-match cache hits; the effect is a deluge of (large) cache entries per sequence, most of which yield minimal reuse opportunities. We present Marconi, the first system that supports efficient prefix caching with Hybrid LLMs. Key to Marconi are its novel admission and eviction policies that more judiciously assess potential cache entries based not only on recency, but also on (1) forecasts of their reuse likelihood across a taxonomy of different hit scenarios, and (2) the compute savings that hits deliver relative to memory footprints. Across diverse workloads and Hybrid models, Marconi achieves up to 34.4$\times$ higher token hit rates (71.1% or 617 ms lower TTFT) compared to state-of-the-art prefix caching systems.


Uncertainty-aware self-training with expectation maximization basis transformation

arXiv.org Artificial Intelligence

Self-training is a powerful approach to deep learning. The key process is to find a pseudo-label for modeling. However, previous self-training algorithms suffer from the over-confidence issue brought by the hard labels, even some confidence-related regularizers cannot comprehensively catch the uncertainty. Therefore, we propose a new self-training framework to combine uncertainty information of both model and dataset. Specifically, we propose to use Expectation-Maximization (EM) to smooth the labels and comprehensively estimate the uncertainty information. We further design a basis extraction network to estimate the initial basis from the dataset. The obtained basis with uncertainty can be filtered based on uncertainty information. It can then be transformed into the real hard label to iteratively update the model and basis in the retraining process.


Potential Energy based Mixture Model for Noisy Label Learning

arXiv.org Artificial Intelligence

Training deep neural networks (DNNs) from noisy labels is an important and challenging task. However, most existing approaches focus on the corrupted labels and ignore the importance of inherent data structure. To bridge the gap between noisy labels and data, inspired by the concept of potential energy in physics, we propose a novel Potential Energy based Mixture Model (PEMM) for noise-labels learning. We innovate a distance-based classifier with the potential energy regularization on its class centers. Embedding our proposed classifier with existing deep learning backbones, we can have robust networks with better feature representations. They can preserve intrinsic structures from the data, resulting in a superior noisy tolerance. We conducted extensive experiments to analyze the efficiency of our proposed model on several real-world datasets. Quantitative results show that it can achieve state-of-the-art performance.


Lancet: Accelerating Mixture-of-Experts Training via Whole Graph Computation-Communication Overlapping

arXiv.org Artificial Intelligence

The Mixture-of-Expert (MoE) technique plays a crucial role in expanding the size of DNN model parameters. However, it faces the challenge of extended all-to-all communication latency during the training process. Existing methods attempt to mitigate this issue by overlapping all-to-all with expert computation. Yet, these methods frequently fall short of achieving sufficient overlap, consequently restricting the potential for performance enhancements. In our study, we extend the scope of this challenge by considering overlap at the broader training graph level. During the forward pass, we enable non-MoE computations to overlap with all-to-all through careful partitioning and pipelining. In the backward pass, we achieve overlap with all-to-all by scheduling gradient weight computations. We implement these techniques in Lancet, a system using compiler-based optimization to automatically enhance MoE model training. Our extensive evaluation reveals that Lancet significantly reduces the time devoted to non-overlapping communication, by as much as 77%. Moreover, it achieves a notable end-to-end speedup of up to 1.3 times when compared to the state-of-the-art solutions.


Faithful Temporal Question Answering over Heterogeneous Sources

arXiv.org Artificial Intelligence

Temporal question answering (QA) involves time constraints, with phrases such as "... in 2019" or "... before COVID". In the former, time is an explicit condition, in the latter it is implicit. State-of-the-art methods have limitations along three dimensions. First, with neural inference, time constraints are merely soft-matched, giving room to invalid or inexplicable answers. Second, questions with implicit time are poorly supported. Third, answers come from a single source: either a knowledge base (KB) or a text corpus. We propose a temporal QA system that addresses these shortcomings. First, it enforces temporal constraints for faithful answering with tangible evidence. Second, it properly handles implicit questions. Third, it operates over heterogeneous sources, covering KB, text and web tables in a unified manner. The method has three stages: (i) understanding the question and its temporal conditions, (ii) retrieving evidence from all sources, and (iii) faithfully answering the question. As implicit questions are sparse in prior benchmarks, we introduce a principled method for generating diverse questions. Experiments show superior performance over a suite of baselines.


DynaPipe: Optimizing Multi-task Training through Dynamic Pipelines

arXiv.org Artificial Intelligence

Multi-task model training has been adopted to enable a single deep neural network model (often a large language model) to handle multiple tasks (e.g., question answering and text summarization). Multi-task training commonly receives input sequences of highly different lengths due to the diverse contexts of different tasks. Padding (to the same sequence length) or packing (short examples into long sequences of the same length) is usually adopted to prepare input samples for model training, which is nonetheless not space or computation efficient. This paper proposes a dynamic micro-batching approach to tackle sequence length variation and enable efficient multi-task model training. We advocate pipeline-parallel training of the large model with variable-length micro-batches, each of which potentially comprises a different number of samples. We optimize micro-batch construction using a dynamic programming-based approach, and handle micro-batch execution time variation through dynamic pipeline and communication scheduling, enabling highly efficient pipeline training. Extensive evaluation on the FLANv2 dataset demonstrates up to 4.39x higher training throughput when training T5, and 3.25x when training GPT, as compared with packing-based baselines. DynaPipe's source code is publicly available at https://github.com/awslabs/optimizing-multitask-training-through-dynamic-pipelines.


RAF: Holistic Compilation for Deep Learning Model Training

arXiv.org Artificial Intelligence

As deep learning is pervasive in modern applications, many deep learning frameworks are presented for deep learning practitioners to develop and train DNN models rapidly. Meanwhile, as training large deep learning models becomes a trend in recent years, the training throughput and memory footprint are getting crucial. Accordingly, optimizing training workloads with compiler optimizations is inevitable and getting more and more attentions. However, existing deep learning compilers (DLCs) mainly target inference and do not incorporate holistic optimizations, such as automatic differentiation and automatic mixed precision, in training workloads. In this paper, we present RAF, a deep learning compiler for training. Unlike existing DLCs, RAF accepts a forward model and in-house generates a training graph. Accordingly, RAF is able to systematically consolidate graph optimizations for performance, memory and distributed training. In addition, to catch up to the state-of-the-art performance with hand-crafted kernel libraries as well as tensor compilers, RAF proposes an operator dialect mechanism to seamlessly integrate all possible kernel implementations. We demonstrate that by in-house training graph generation and operator dialect mechanism, we are able to perform holistic optimizations and achieve either better training throughput or larger batch size against PyTorch (eager and torchscript mode), XLA, and DeepSpeed for popular transformer models on GPUs.


Learning Domain Invariant Representations for Generalizable Person Re-Identification

arXiv.org Artificial Intelligence

Generalizable person Re-Identification (ReID) has attracted growing attention in recent computer vision community. In this work, we construct a structural causal model among identity labels, identity-specific factors (clothes/shoes color etc), and domain-specific factors (background, viewpoints etc). According to the causal analysis, we propose a novel Domain Invariant Representation Learning for generalizable person Re-Identification (DIR-ReID) framework. Specifically, we first propose to disentangle the identity-specific and domain-specific feature spaces, based on which we propose an effective algorithmic implementation for backdoor adjustment, essentially serving as a causal intervention towards the SCM. Extensive experiments have been conducted, showing that DIR-ReID outperforms state-of-the-art methods on large-scale domain generalization ReID benchmarks.